
Exploiting fixable, removable, and implied values

in Constraint Satisfaction Problems

Lucas Bordeaux, Marco Cadoli, Toni Mancini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
bordeaux|cadoli|tmancini@dis.uniroma1.it

Abstract. Complete algorithms for constraint solving typically exploit
properties like (in)consistency or interchangeability, which they detect
by means of incomplete yet effective algorithms and use to reduce the
search space. In this paper, we study a wide range of properties which in-
cludes most of the ones used by existing CSP algorithms as well as some
which have not yet been considered in the literature, and we investigate
their use in CSP solving. We clarify the relationships between these no-
tions and characterise the complexity of the problem of checking them.
Following the CSP approach, we then determine a number of relaxations
(for instance local versions) which provide sufficient conditions whose
detection is tractable. This work is a first step towards a comprehensive
framework for CSP properties, and it also shows that new notions still
remain to be exploited.

1 Introduction

Many Constraint Satisfaction Problems (CSPs) which arise in the modelling
of real-life problems exhibit “structural” properties that distinguish them from
random instances. Detecting such properties has been widely recognised to be an
effective way for improving the solving process. To this end, several of them have
already been identified, and different techniques have been developed in order
to exploit them, with the goal of reducing the search space to be explored. Good
examples are value substitutability and interchangeability [11], more general
forms of symmetries [6, 12], and functional dependencies among variables [18, 1].

Unfortunately, checking whether such properties hold, is (or is thought to be)
often computationally hard. As an example, let us consider interchangeability.
Value a is said to be interchangeable with value b for variable x if every solution
which assigns a to x remains a solution if x is changed to b, and vice versa [11].
The problem of checking interchangeability is coNP-complete (cf. Proposition 2).
Analogously, detecting some other forms of symmetry reduces to the graph auto-
morphism problem [5] (for which there are no polynomial time algorithms, even
if there is evidence that it is not NP-complete [16]).

To this end, in order to allow general algorithms to exploit such properties
efficiently, different approaches can be followed. First of all, syntactic restrictions
on the constraint languages can be enforced, in order to allow for the efficient

2 Lucas Bordeaux, Marco Cadoli, Toni Mancini

verification of the properties of interest. Alternatively, “local” versions of such
properties can be defined, that can be used to infer their global counterparts,
and such that they can be verified in polynomial time. As an instance of this
“local reasoning” approach, instead of checking whether a value is fully inter-
changeable for a variable, Freuder [11] proposes to check whether that value is
neighbourhood, or k-interchangeable. This task involves considering only subsets
of the constraints of bounded size, and hence can be performed in polynomial
time. Neighbourhood and k-interchangeability are sufficient (but not necessary)
conditions for full interchangeability, and have been proven to be highly effec-
tive in practice (cf., e.g., [4, 3]). Moreover, in some cases, the existence of some
properties can also derive from intrinsic characteristics of the problem, or even
from an explicit promise [9], cf. forthcoming Example 1.

In this paper we give a formal characterisation of several properties of CSPs
which can be exploited in order to save search. Some of them are well-known,
while some others are, to the best of our knowledge, original. All the presented
definitions are then collected in a unified framework, and hierarchically classified
in order to highlight the semantical connections that hold among them. After-
wards, we present a formal discussion of their computational properties, and
show how some of them can be practically exploited by the solving engine in
order to save search.

In general, all these properties can be detected either statically, during a
preprocessing stage of the input CSP (cf. e.g., [2]), dynamically, during search
(since they may arise at any time), or explicitly “promised” by an external entity.

Example 1 (Factoring [17, 23]). This problem is a simplified version of one of the
most important problems in public-key cryptography. Given a (large) positive
integer Z, which is known to be the product of two prime numbers (different
from 1), it amounts to find its factors X and Y .

An intuitive formulation of this problem as a CSP, in order to deal with
arbitrarily large numbers, amounts to encode the combinatorial circuit of integer
multiplication, and is as follows: assuming the input integer Z having n digits
(in base b) z1, . . . , zn, we consider 2n variables x1, . . . , xn and y1, . . . , yn one for
each digit (in base b) of the two factors, X and Y (with x1 and y1 being the
least significant ones). The domain for all these variables is [0, b− 1]. In order to
maintain information about the carries, n + 1 additional variables c1, . . . , cn+1

must be considered, with domain [0..(b− 1)2n/b].
As for the constraints (cf. Fig. 1 for the intuition), they are the following:

1. Constraints on factors:
(a) Factors must be different from 1, or, equivalently, X 6= Z and Y 6= Z

must hold;
(b) For every digit i ∈ [1, n]: zi = ci +

∑

j,k∈[1,n]:j+k=i+1(xj ∗ yk mod b);

2. Constraints on carries:
(a) Carry on the least significant digit is 0: c1 = 0;
(b) Carries on other digits: ∀i ∈ [2, n+ 1], ci = ci−1 +

∑

j,k∈[1,n]:j+k=i

xj∗yk

b
;

(c) Carry on the most significant digit is 0: cn+1 = 0; ⊓⊔

Exploiting fixable, removable and determined values in CSP 3

7 8 7 ∗

7 9 7 =
0 6 13 18 12 4 0

49 56 49
63 72 63 −

49 56 49 − −

6 2 7 2 3 9

x3 x2 x1 ∗

y3 y2 y1 =
c7 c6 c5 c4 c3 c2 c1

x3y1 x2y1 x1y1

x3y2 x2y2 x1y2 −

x3y3 x2y3 x1y3 − −

z6 z5 z4 z3 z2 z1

Fig. 1. Factoring instance 627239, n = 6, b = 10

It is worth noting that, when a guess on the two factors X and Y (i.e., on vari-
ables x1, . . . , xn and y1, . . . , yn) has been made, values for variables c1, . . . , cn+1

are completely determined, since they follow from the semantics of the multipli-
cation. Functional dependencies arise very often, e.g.,, in all problems for which
an intermediate state has to be maintained, and their detection and exploitation
has been recognized to be of great importance from an efficiency point of view,
since it can lead to significant reductions of the search space (cf., e.g., [13, 1, 2]).

The presence of functional dependencies among variables of a CSP highlights
an interesting problem, i.e., that of computing the values of dependent variables
when a choice of the defining ones has been made. It is worth noting that this
problem, always present as a subproblem of a CSP with dependencies, has ex-
actly one solution. Hence, the knowledge of such a promise can be useful to
the solver. It is worth noting that there are also problems which intrinsically
exhibit promises. This is the case of, e.g., Factoring, where we additionally add
the symmetry-breaking constraint forcing x1, . . . , xn to be lexicographically less
than or equal to y1, . . . , yn. This new formulation is guaranteed to have exactly
one solution.

In what follows, we investigate the relations that hold among different concepts.
In particular, we reconsider the notions of inconsistency, substitutability and
interchangeability, and propose the concepts of fixable, removable, and implied
value for a given variable, and those of determined, dependent, and irrelevant
variable. These properties make it possible to transform a problem into a simpler
one. Depending on the case, this transformation is guaranteed to preserve all
solutions of the problem, or to preserve at least one if one exists.

In order to give the intuition of some of the properties we are going to define,
let us reconsider the Factoring problem.

Example 2 (Factoring, Example 1 continued). Let us consider an instance such
that Z is given in binary notation (i.e., b = 2) and with the least significant
digit, z1 = 1. This implies that the last digit of both factors X and Y must be 1.
Hence, we can say that value 1 is implied for variables x1 and y1, and that 0 is
removable for them and, more precisely inconsistent. Moreover, for this problem,
which, if the symmetry is broken, has a unique solution, we also know that all
variables x1, . . . , xn and y1, . . . , yn are determined (cf. forthcoming Definition 1),
regardless of the instance, and because of the functional dependence already
discussed in Example 1, we have that variables encoding carries, i.e., ci (i ∈
[1, n]), are dependent on {x1, . . . xn, y1, . . . , yn}. ⊓⊔

4 Lucas Bordeaux, Marco Cadoli, Toni Mancini

Unfortunately, solving problem instances with unique solutions is likely to remain
intractable (cf., e.g., [22]). But this does not exclude, of course, the possibility
to find good heuristics for instances with such a promise, or to look for other
properties that are implied by the existence of unique solutions, that can be
exploited in order to improve the search process. In particular, determined and
implied values play an important role in this and other classes of problems. As
the previous example shows, such problems arise frequently in practice, either as
subproblems of other CSPs, as in presence of functional dependencies, or because
of intrinsic characteristics of the problem at hand. In general, if a problem has
a unique solution, all variables have a determined value.

Another central role is played by the removability property, that characterises
precisely the case when a value can be safely removed from the domain of a
variable, while preserving satisfiability. This property is of course weaker than
inconsistency, (since some solutions may be lost), but can be safely used in place
of it when we are interested in finding only a solution of the input CSP, if one
exists, and not all of them.

Unfortunately, detecting the proposed properties is computationally hard in
general. In particular, we show that these tasks are all coNP-complete. This
holds also for Freuder’s substitutability and interchangeability (this result is, to
the best of our knowledge, original). Hence, in order to be able to practically
make the relevant checks during preprocessing and search, we show how some
of the proposed properties can be verified efficiently along two lines: by impos-
ing restrictions on the constraint language, and by exploiting locality, i.e., by
checking them for single constraints.

The outline of the paper is as follows: after recalling some preliminaries, in
Section 2 we formally define all the properties we are interested in, and discuss
the semantical connections that hold among them. Then, in Section 3 we present
the intractability results of checking such properties. Hence, in Section 4 we show
some tractability results, investigating the two aforementioned approaches in
order to be able to efficiently make the required reasoning: imposing restrictions
on the constraint languages, and exploring locality. Finally, in Section 5 we draw
conclusions and address future work.

2 A hierarchy of properties

2.1 Preliminaries

Let D be a finite set of size at least 2. A V -tuple t, where V represents a finite
set of variables, is a mapping which associates a value tx ∈ D to every x ∈ V .
A V -relation is a set of V -tuples. A Constraint Satisfaction Problem (CSP) is a
triple 〈X,D,C〉 where:

– X is a finite set of variables,
– D associates to every variable x ∈ V a domain Dx ⊆ D and
– C is a finite set of constraints, each of which is a V -relation for some V ⊆ X .

Exploiting fixable, removable and determined values in CSP 5

Given a V -tuple t and a subset U ⊆ V of its variables, we denote by t|U
the restriction of t to U , which has the same value as t on the variables of U
and is undefined elsewhere. The explicit assignment of the value of a V -tuple
t on a variable x ∈ V to value a is written t[x := a]. The relational operators
of selection, projection and complement will be useful: given a V -relation c, a
subset U of V and a value a ∈ Dx, we denote by σx=a(c) (resp. σx 6=a(c)) the
V -relation which contains the tuples of c whose value on x is a (resp. is different
from a), by πU (c) the set of restrictions to U of tuples of c (i.e., the set of
U -tuples {t | ∃t′ ∈ c (t = t′|U)}) and by c the set of V -tuples {t | t 6∈ c}.

An X-tuple t satisfies a V -relation c ∈ C if t|V ∈ c. We denote by Sol(c) the
set of X-tuples which satisfy c. The set

⋂

c∈C Sol(c) of X-tuples which satisfy
all the constraints is called the solution space, and denoted Sol(C). The set of
X-tuples t such that tx ∈ Dx for all variables x is called the search space and
noted SD, or simply S if the domain is implicit from the context. Note that
σx=a(S) denotes the search space obtained by fixing Dx to {a} if a ∈ Dx and is
empty otherwise. For the sake of simplicity, the sets X and C will be considered
as globally defined and shall therefore be omitted from the parameters of most
definitions; only the search space will be explicitly mentioned.

2.2 Definitions

Definition 1. The following properties are defined for a search space S, vari-
ables x and y, values a and b, and for a set of variables V :

fixable(S, x, a) ≡ ∀t ∈ S (t ∈ Sol(C) → t[x := a] ∈ Sol(C))

substitutable(S, x, a, b) ≡ ∀t ∈ S

(

tx = a ∧ t ∈ Sol(C) →
t[x := b] ∈ Sol(C)

)

interchangeable(S, x, a, b) ≡
substitutable(S, x, a, b)∧
substitutable(S, x, b, a)

removable(S, x, a) ≡ ∀t ∈ S

(

tx = a ∧ t ∈ Sol(C) →
∃b 6= a (t[x := b] ∈ Sol(C))

)

inconsistent(S, x, a) ≡ ∀t ∈ S
(

t ∈ Sol(C) → tx 6= a)
)

implied(S, x, a) ≡ ∀t ∈ S
(

t ∈ Sol(C) → tx = a)
)

determined(S, x) ≡ ∀t ∈ S

(

t ∈ Sol(C) →
∀b 6= tx (t[x := b] 6∈ Sol(C))

)

dependent(S, V, y) ≡ ∀t, t′ ∈ S

t ∈ Sol(C)∧
t′ ∈ Sol(C)∧
∀x ∈ V (tx = t′x)

→ ty = t′y

irrelevant(S, x) ≡ ∀t ∈ S

(

t ∈ Sol(C) →
∀a ∈ Dx (t[x := a] ∈ Sol(C))

)

6 Lucas Bordeaux, Marco Cadoli, Toni Mancini

In the few cases where an ambiguity arises on the considered set of con-
straints, we will indicate it using subscript (e.g., irrelevant

C
(S, x)). Note that

all the definitions but the last three ones are value-oriented, in that they are
properties of particular values of the domain. On the contrary, dependency, ir-
relevance and determinacy are variable-oriented properties which do not directly
express results on particular values of the domains but have important relations
with the value-oriented notions.

The notion of consistency was proposed in [21, 19] and is one of the best-
studied notions in CSP. Substitutability and interchangeability were introduced
in [11]. Implied values, which are known as backbones in the literature, were
seemingly first explicitly studied in [20]. To the best of our knowledge, the no-
tion of removable and fixable values have on the contrary not been considered.
Determined, irrelevant and dependent variables have been studied in a number
of contexts but we are aware of little work concerning their application in the
context of CSP. The following example illustrates some of the properties.

Example 3. Consider a CSP modeling the colouring problem for the graph below.
Let c1 . . . c4 denote the variables involved, and Σ denote the search space in
which all four variables have domain {R,G,B}. We have:

2

1 3

4

– fixable(Σ,c1,R),
– substitutable(Σ,c1,R,G),
– interchangeable(Σ,c1,R,G),
– removable(Σ,c1,G),
– irrelevant(Σ,c1).

Example 4. Consider a CSP over boolean variables a, b, and c, whose constraints
are written below. Denoting as Ξ the search space in which all variables range
over {true, false}. We have:

a ∧
a→ b ∧
(c ∨ d)↔ e

– inconsistent(Ξ,b,false),
– implied(Ξ,b,true),
– determined(Ξ,b),
– dependent(Ξ,{c, d},e).

2.3 Semantical relations

The notions presented in Definition 1 are semantically connected, and we clarify
here the main relationships that exist between them.

Proposition 1. The relations shown in Figure 2 hold between the properties
defined in Definition 1.

Proof. (sketch)

dependence-determinacy: we have dependent(S, {x1, . . . , xi}, y) iff any solu-
tion t has a value on y which is given by a function f of the values it assigns
to x1 . . . xi, iff in any search space σx1=a1...xi=ai

(S) (where all these vari-
ables receive a fixed value), all solutions assign the same value f(a1, . . . , an)
to y.

Exploiting fixable, removable and determined values in CSP 7

inconsistent(S, x, a)→
∀b ∈ Dx substitutable(S, x, a, b)

implied(S, x, a)↔
∀b ∈ Dx \ {a} inconsistent(S, x, b)

dependent(S, {x1 . . . xi}, y)↔
∀a1 ∈ Dx1

. . . ai ∈ Dxi
determined(σx1=a1...xi=ai

(S), y)

irrelevant(S, x)↔
∀a ∈ Dx fixable(S, x, a)

determined(S, x)↔
∃b ∈ Dx implied(S, x, b)

implied(S, x, b)→
fixable(S, x, b)

removable(S, x, a)←
∃b ∈ Dx \ {a} substitutable(S, x, a, b)

inconsistent(S, x, a)→
removable(S, x, a)

fixable(S, x, b)↔
∀a ∈ Dx substitutable(S, x, a, b)

irrelevance dependence

determinacy

implication

fixability inconsistency

substitutability

removability

Fig. 2. Relations between the properties

irrelevance-fixability: t ∈ Sol(C)→ ∀a ∈ Dx(t[x := a] ∈ Sol(C)) rewrites to
∀a ∈ Dx(t ∈ Sol(C)→ t[x := a] ∈ Sol(C)).

determinacy-implication: if we have implied(S, x, b) for some b, then for any
t and any a 6= b we have t[x := a] 6∈ Sol(C). If we have determined(S, x)
and t ∈ Sol(C), then implied(S, x, tx) (no t′ with t′x 6= tx is in Sol(C)).

implication-fixability: implied(S, x, b) means that every t ∈ Sol(C) has tx =
b. Hence for every t ∈ Sol(C), we have t[x := b] = t ∈ Sol(C).

implication-inconsistency: implied(S, x, a) holds iff ∀t (tx 6= a→ t 6∈ Sol(C)),
i.e., iff ∀t ∀b ∈ Dx \ {a} (tx = b → t 6∈ Sol(C)). This rewrites to ∀b ∈
Dx \ {a} inconsistent(S, x, b).

fixability-substitutability: Let Dx = {a1, .., ad}. We have
∧

i∈1..d substitu-
table(S, x, ai, b) iff ∀t ((tx = a1 ∨ · · · ∨ tx = ad) ∧ t ∈ Sol(C) → t[x := b] ∈
Sol(C)), which rewrites to fixable(S, x, v).

inconsistency-substitutability: suppose we have inconsistent(S, x, a). No so-
lution t with tx = a exists, hence the implication tx = a ∧ t ∈ Sol(C)→ . . .
is always valid.

inconsistency-removability: same argument as for inconsistency-substitutability.

substitutability-removability: suppose we have substitutable(S, x, a, b) for
some value b. This can be written ∃b ∀t (tx = a ∧ t ∈ Sol(C) → t[x := b] ∈
Sol(C)), which implies that ∀t ∃b(tx = a∧t ∈ Sol(C)→ t[x := b] ∈ Sol(C)).
The latter rewrites to ∀t (tx = a ∧ t ∈ Sol(C)→ ∃b t[x := b] ∈ Sol(C)).

8 Lucas Bordeaux, Marco Cadoli, Toni Mancini

Note also that determined values are strongly related to problems with a
unique solution: if a problem has a unique solution, then all its variables have
an implied value (cf. Example 1).

2.4 Exploiting properties in constraint solving

An important reason why the aforementioned properties are interesting is that,
when detected, they allow us to reduce the search space by removing values.
Two key notions here are inconsistency and removability:

– Suppressing a value a from the domain of a variable x preserves all solutions
(i.e., σx 6=a(S) ∩ Sol(C) = S ∩ Sol(C)) iff a is inconsistent for variable x.

– Suppressing a value a from the domain of variable x preserves the satisfia-
bility of the problem (i.e., σx 6=a(S) ∩ Sol(C) = ∅ ↔ S ∩ Sol(C) = ∅) iff
value a is removable from the domain of x.

– Instantiating a value a from the domain of variable x preserves the satisfi-
ability of the problem (i.e., σx=a(S) ∩ Sol(C) = ∅ ↔ S ∩ Sol(C) = ∅) if
value a is fixable for x.

The removability property is therefore weaker than the inconsistency one,
and this shows an interesting benefit: in cases where we do not want to find all
solutions of a problem but we simply want to find one, removability is the ideal
property to use.

Some of these definitions can be used to construct solution-preserving map-
pings, i.e., mappings which transform solutions into solutions.

Definition 2 (solution-preserving transformation). A solution-preserving
transformation is a total mapping τ from S to S such that

∀t ∈ S (t ∈ Sol(C)→ τ(t) ∈ Sol(C))

To understand the connection between solution-preserving transformations
and the aforementioned properties, consider the following mappings:

τ1(t) = t[x := a]

τ2(t) =

{

t[x := b] if tx = a

t otherwise

τ3(t) =

t[x := b] if tx = a

t[x := a] if tx = b

t otherwise

Checking whether value a is fixable for variable x, whether value a is substi-
tutable to value b for variable x, and whether values a and b are interchangeable
for value x amounts to checking whether mappings τ1, τ2 and τ3 (respectively)
are solution-preserving.

3 Intractability results

In this section, we show that the problem of checking whether properties defined
in Definition 1 hold is intractable. From now on, we assume that the input is

Exploiting fixable, removable and determined values in CSP 9

given as a set of constraints C over a set of variables X . We also assume that
the problem of checking whether t ∈ Sol(C) is polynomial in the size of the
representation of the input. Additionally, we assume that the size of D is fixed.
Such properties hold for propositional logic and for CSPs, in the sense of [8].

We note that the problem of checking each property of Definition 1 is in coNP,
because it can be done by guessing all tuples in S in non-deterministic polynomial
time, and making the relevant tests in polynomial time (as for interchangeability,
we note that the logical and of two properties in coNP is still in coNP). In the
rest of this section, proofs are therefore restricted to the coNP-hardness part.

Proposition 2 (coNP-completeness of properties of Definition 1). Given
a CSP, the following tasks are coNP-complete:

– Checking whether value a is fixable, removable, inconsistent, implied, deter-
mined for variable x;

– Checking whether value a is substitutable to, or interchangeable with b for
variable x;

– Checking whether variable y is dependent on variables in V ;
– Checking whether variable x is irrelevant.

Proof. For the sake of simplicity, we give the proofs for fixability and substi-
tutability. The other proofs can be given in a similar way, by using also Proposi-
tion 1. To prove that checking fixability and substitutability are hard for coNP, we
reduce a coNP-complete problem, i.e., that of checking that an arbitrary CSP is
unsatisfiable, to fixability and substitutability. In particular, the proofs hold even
if the domains are binary, in which case the CSP can be written as a propositional
formula, e.g., in CNF.

Fixability. Let us consider an arbitrary propositional formula φ in CNF, over
variables X, and a variable x 6∈ X. Let ψ be defined as φ ∧ ¬x. We have that ψ
is unsatisfiable if and only if φ is unsatisfiable.

We now show that φ is unsatisfiable if and only if value true is fixable for x
in formula ψ. Let us first assume that φ is unsatisfiable. It follows that true is
fixable for x in ψ, because ψ has no models.

As for the other direction, by Definition 1, if true is fixable for x in ψ, then,
every model of ψ remains a model if x is assigned to true. However, since, by
construction, models of ψ never assign true to x, it follows that true is fixable
for x in ψ only if no solutions to ψ exist, hence, only if φ is unsatisfiable.

Substitutability. Let us consider an arbitrary propositional formula φ in CNF,
over variables X, and a variable x 6∈ X. Let ψ be the defined as φ∧ x. We have
that ψ is unsatisfiable if and only if φ is unsatisfiable.

We now show that φ is unsatisfiable if and only if value true is substitutable
to false for x in ψ. Let us first assume that φ is unsatisfiable. It follows that true

is substitutable to false for x in ψ, because ψ has no models.
As for the other direction, by Definition 1, if true is substitutable to false for

x in ψ, then, every model of ψ with x assigned to true remains a model if x is
assigned to false. However, since, by construction, models of ψ never assign false

10 Lucas Bordeaux, Marco Cadoli, Toni Mancini

to x, it follows that true is substitutable to false for x in ψ only if no solutions
to φ exist.

It is worth noting that the intractability of checking the above properties
hold also for binary CSPs (i.e., CSPs in which all constraints relate at most two
variables). As an example, the following result holds.

Corollary 1 (coNP-completeness of fixability for binary constraints).
Given a CSP with only binary constraints, checking whether a value a is fixable
for a variable x is coNP-complete.

Proof. Let Φ = 〈X,D,C〉 be a binary CSP. Consider an arbitrary variable y 6∈ X
and let a and b be arbitrary values. Let Ψ denote the CSP 〈X ′, D′, C′〉 with
X ′ = X ∪ {y}, D′

x = Dx forall x ∈ X, D′
y = {a, b}, and C′ = C ∪ {y 6= a}.

Ψ is binary and, by using the same arguments of the proof of Proposition 2, it
follows that Φ is unsatisfiable if and only if value a for variable y is fixable for Ψ .
From the observation that a CSP encoding of the graph 3-colourability problem
can be made using only binary constraints, the thesis follows, since checking
unsatisfiability of this problem (which is coNP-hard) can be reduced into checking
fixability in a binary CSP.

4 Tractability results

Since detecting any of the properties we are interested in in the paper is a
computationally hard problem, a natural question is to determine special cases
where this can be done efficiently. We investigate two approaches: we exhibit
syntactical restrictions which make the problem tractable, and we study local
relaxations of these definitions which are polynomial-time checkable, and which
therefore provide incomplete algorithms for detecting the property.

4.1 Tractability for restricted constraint languages

A number of syntactical restrictions to the constraint satisfaction problem are
known which make it tractable. For instance, in the case of boolean constraints,
i.e., propositional formulae, the satisfiability problem becomes tractable if the in-
stance is expressed using only Horn clauses, only dual Horn clauses (i.e., clauses
with at most one negative literal), only clauses of size at most 2, or only affine
constraints (i.e., constraints built using XOR) [24]. It is natural to wonder if
all the properties identified in Definition 1 are also easy to determine for these
classes of formulae. This is indeed the case for most of them, and we give a more
general condition under which tractable classes for the consistency property are
also tractable for other properties of our framework. We note that a recent paper
[15] gives a complete characterization of tractable cases for a related property.

We say that a language is closed under instantiation (resp. under comple-
mentation) if whenever a constraint c is expressible in the language, the relation
πX\{x}(σx=a(c)) (resp. the complementation c) is also representable by a con-
junction of constraints of this language. For instance, taking a Horn clause, a

Exploiting fixable, removable and determined values in CSP 11

dual Horn clause, a 2CNF clause or an affine constraint, we can express the
relation obtained by instantiating a variable to a value or by complementing the
constraint as a conjunction of constraints of the same type.

Proposition 3. If the satisfiability problem for the language is tractable and if
the language is closed under complementation and instantiation, then checking
any property among fixability, substitutability, interchangeability, inconsistency,
determinacy or irrelevance is tractable.

Proof. We start by the substitutability property and note that value a is substi-
tutable by b for variable x if

πX\{x}(σx=a(Sol(C))) ⊆ πX\{x}(σx=b(Sol(C)))

This inclusion holds iff tx = a∧ t ∈ Sol(C)→ t[x := b] ∈ Sol(C). This inclusion
is false, i.e., we do not have substitutability if the set

πX\{x}(σx=a(Sol(C))) ∩ πX\{x}(σx=b(Sol(C))) (1)

is non empty. Since σx=a(Sol(C)) = σx=a(
⋂

c∈C Sol(c)) =
⋂

c∈C(σx=a(Sol(c))),
we have:

πX\{x}(σx=b(Sol(C))) = πX\{x}

(⋂

c∈C(σx=b(Sol(c)))
)

Although the projection of an intersection of relations is not equal to the inter-
section of their projections in general, the latter rewrites to:

⋂

c∈C

πX\{x}(σx=b(Sol(c)))

This is due to the fact that we select on x before eliminating it by projection.
We only prove the inclusion which does not hold in general: suppose we have
t ∈

⋂

c∈C πX\{x}(σx=b(Sol(c))). This means that ∀c ∈ C, there exists a tuple
tc such that tc|X\{x} = t and tc ∈ σx=b(Sol(c)). It follows that tcx = b and
that we have indeed a unique t with tx = b and tc|X\{x} = t which is such that
∀c ∈ C (t ∈ σx=b(Sol(c))), i.e., t ∈ πX\{x}(

⋂

c∈C(σx=b(Sol(c)))).
Equation (1) is therefore equivalent to:

πX\{x}(σx=a(Sol(c))) ∩
⋃

c∈C

πX\{x}(σx=b(Sol(c)))

A solution exists (and we therefore do not have substitutability) if one of the sets

πX\{x}(σx=a(Sol(c))) ∩ πX\{x}(σx=b(Sol(c)))

obtained for every c ∈ C has a solution. If the language is closed under instanti-
ation and complement, we can express the new constraint πX\{x}(σx=a(Sol(c)))
as a constraint c′ of the language. Each of the sets has a solution iff the CSP
〈X,D, {σx=a(c) | c ∈ C}∪{c′}〉 is satisfiable. We have reduced the substitutabil-
ity testing problem to solving m instances of a constraint satisfaction problem
whose constraints are all in the original language, which is tractable.

12 Lucas Bordeaux, Marco Cadoli, Toni Mancini

The result for the fixability, interchangeability and irrelevance properties fol-
lows directly. Consistency of value a for variable x can directly be expressed as
the satisfiability of πX\{x}(σx=a(Sol(C))), which can be expressed in the language
since we assume closure under instantiation, and the proofs for the implication
and determinacy properties follow from this result.

A slightly different closure property is needed for the removability of value a
for variable x since it is expressed as πX\{x}(Sol(C)) ⊆ πX\{x}(σx 6=a(Sol(C))).

Nevertheless, since on boolean domains a value v is removable if v is sub-
stitutable by ¬v, and from the remarks on the closure properties of Schaefer’s
classes, and the previous proposition, we obtain that:

Corollary 2. Testing fixability, substitutability, interchangeability, inconsistency,
determinacy, irrelevance and removability is tractable for a boolean CSP where
constraints are either Horn clauses, dual Horn clauses, clauses of size at most
two or affine constraints.

4.2 Tractability through locality

An important class of incomplete criteria to determine in polynomial time whether
a complex property holds are those based on local reasoning. This approach has
proved extremely successful for consistency [19] and interchangeability [11] prop-
erties. We propose in this section a systematic investigation of whether a local
approach can be used for value-based properties.

Verifying a property P (C) of a set of constraints C locally means that we
verify the property on a well-chosen number of sub-problems. We must ensure
that this approach is sound for the considered property:

Definition 3 (soundness of local reasoning). We say that local reasoning
on a property P is sound if, for all subsets of constraints C1 ⊆ C, . . . , Ck ⊆ C
such that

⋃

i∈1..k Ci = C, we have

(∧

i∈1..k P (Ci)
)

→ P (C)

Note that if a property P satisfies this requirement, its negation satisfies a
stronger soundness property:

(∨

i∈1..k ¬P (Ci)
)

→ ¬P (C). A typical choice of
granularity is to simply consider that each Ci contains one of the constraints of
C as is done, for instance, for arc-consistency. On the other extreme, if we take a
unique C1 = C, we have a global checking. Between these two extremes, a wide
range of intermediate levels can be defined [10, 11].

Reasoning locally is typically tractable if we focus on a moderate number
of subsets of C, and under the condition that we can bound the complexity
of reasoning on each of these subsets. A typical assumption in CSP is that we
can bound the arity of the constraints, and that every constraint is for instance
binary. In this case, the cost of determining any property of the constraint is
polynomial (here again we are indeed polynomial in the domain size, we therefore
assume that the input is represented in a way polynomial in the domain size, for

Exploiting fixable, removable and determined values in CSP 13

instance with the domains listed explicitly); and if we choose to reason locally
by considering each constraint separately, or by taking groups of constraints of
bounded size, then local checking is tractable.

Proposition 4. Local reasoning is sound for the properties of substitutability,
interchangeability, fixability, inconsistency and implication.

Proof. The result is well-known for consistency [19], substitutability and inter-
changeability [11]. Fixability of variable x to value b can be expressed as

∀a 6= b (substitutable
C
(S, x, a, b))

Therefore, if we have
∧

i∈1..k fixable
Ci

(S, x, b) (which is equivalent to
∧

i

∧

a6=b

substitutable
Ci

(S, x, a, b) and to
∧

a6=b

∧

i substitutable
Ci

(S, x, a, b)), then we

have
∧

a6=b substitutable
C
(S, x, a, b), which means fixable

C
(S, x, b). The impli-

cation property satisfies the following, stronger property (which implies that local
reasoning is sound):

(∨

i∈1...m implied
Ci

(S, x, a)
)

→ implied
C
(S, x, a)

In effect, if a value a is implied for variable x in any Ci, then all tuples t with
tx 6= a violate the constraints of Ci and do a fortiori not belong to Sol(C).

There is only one property, namely removability, for which the local approach
is unfortunately not sound:

Proposition 5. Local reasoning is not sound for the removability property.

Proof. Take C = C1∧C2, where C1 is defined as x ≤ y and C2 as x ≥ y. Suppose
the domain has values {1, 2, 3}. Value 2 for x is removable from both constraints
considered independently since, in both cases, we can change the value of any
solution which assigns 2 to x to another value. Still, value 2 is not removable
from their conjunction.

Note that removing values which are shown to be removable only locally can
even make a satisfiable problem unsatisfiable: if furthermore we add the con-
straints C3, defined as x 6= 1 and C4, defined as x 6= 3, then value 2 for x is
removable in each constraint, while the only (global) solution actually has value
2 on x.

This proposition raises an interesting issue: does there exist new (i.e., other
than the special cases of substitutable and inconsistent values) properties for
which local reasoning is sound and which imply removability?

We end this section by noting that the local version of the fixability property
is indeed a generalisation for arbitrary domains of the pure literal rule [7] which
is well-known in the case of boolean constraints in conjunctive normal form. The
pure literal rule exploits the cases where no constraint (clause) of the problem has
a positive (resp. negative) occurrence of some variable x. In this case, assigning
value 0 (resp. 1) to x preserves the satisfiability of the problem: if a solution t
with tx = 1 exists, then t[x := 0] will also be a solution since no clause constrains
x to have value 1. It is clear that the pure literal rule is a rule to detect fixability
based on a reasoning local to each clause (a variable x is fixable to, say, 1 in a
clause iff this clause does not contain the literal ¬x, and the pure literal rule
checks that this condition holds for every constraint).

14 Lucas Bordeaux, Marco Cadoli, Toni Mancini

5 Conclusions and perspectives

In this paper we focused on structural properties of CSPs that can be exploited
by the solver in order to simplify search. Starting from the well-known notions of
inconsistency and substitutability, we propose removability as a property which
subsumes both of them, as well as several new others, e.g., fixability, which are
particularly interesting if we want to find just a solution of the input CSP, and
not to compute all of them. By classifying these properties in a unified hierarchy,
we investigated the semantical connections among them, and provided a first step
towards a comprehensive framework. Note that our central definitions are value-
based and that more general definitions inspired from the tuple-based notion of
substitutability proposed in [14] could be considered in future work.

Then, we tackled the questions related to their automated detection and of
their exploitation by the solving engine for simplifying problems. In particular,
we showed how detecting all the proposed properties is generally intractable,
but, for many of them, it becomes polynomial-time in two cases: by restricting
the constraint languages, and by exploiting locality. Moreover, we discussed how
in some cases such properties may arise from explicit promises made by users.
This is the case of problems with properties such as functional dependencies and
unique solutions.

Two of the perspectives raised by our work concern the new properties which
have emerged from it. We have identified the removability property as an ideal
characterisation of the values which can be removed while preserving satisfiabil-
ity. Unfortunately, negative results (coNP-completeness of the detection of this
property and impossibility of local reasoning) make it impossible to directly use
the removability property in practice. This justifies the use of weaker notions (like
inconsistency or substitutability) which imply the removability property, yet can
be checked by tractable means (of course at the price of losing completeness).
An interesting problem is to determine new cases where removability-checking is
tractable. Lastly, the benefits of fixability have long been known in the boolean
case, since this property has been used in the form of the pure literal rule in
many SAT solvers. Its generalisation to CSPs has not yet been considered, and
will be the subject of future work. Another issue we intend to explore is the ap-
plication of the properties of Definition 1 to problems not in NP, e.g., to model
checking of formulae of temporal logic or quantified boolean formulae.

Acknowledgements. Work partially supported by project ASTRO funded by
the Italian Ministry for Research under the FIRB framework (funds for basic
research), and by a COFIN/PRIN project. We thank the reviewers for their
careful reading which helped us improving the paper.

References

1. M. Cadoli and T. Mancini. Exploiting functional dependencies in declarative prob-
lem specifications. In 9th Euro. Conf. on Logic in Artificial Intelligence (JELIA),
pages 628–640. Springer, 2004.

2. M. Cadoli and T. Mancini. Using a theorem prover for reasoning on constraint
problems. In 3rd Int. CP Workshop on Modelling and Reformulating CSPs, 2004.

Exploiting fixable, removable and determined values in CSP 15

3. B. Choueiry, A. Lal, and E. C. Freuder. Interchangeability and dynamic bundling
for non-binary finite CSPs. In Int. Workshop on Constraint Solving and Constraint
Logic Programming (CSCLP), page To appear. Springer, 2004.

4. B. Choueiry and G. Noubir. On the computation of local interchangeability in dis-
crete constraint satisfaction problems. In Nat. (US) Conf. on Artificial Intelligence
(AAAI), pages 326–333. AAAI, 1998.

5. J. M. Crawford. A theoretical analysis of reasoning by symmetry in first-order
logic (extended abstract). In AAAI Workshop on Tractable Reasoning, 1992.

6. J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking
predicates for search problems. In Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR), pages 148–159. Morgan Kaufmann, 1996.

7. M. Davis and H. Putnam. A computing procedure for quantification theory. J. of
the ACM, 7(3):201–215, 1960.

8. R. Dechter. Constraint networks (survey). In Encyclopedia of Artificial Intelligence,
2nd edition, pages 276–285. 1992.

9. S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61(2):159–173,
1984.

10. E. C. Freuder. Synthesizing constraint expressions. Comm. of the ACM,
21(11):958–966, 1978.

11. E. C. Freuder. Eliminating interchangeable values in constraint satisfaction prob-
lems. In Nat. (US) Conf. on Artificial Intelligence (AAAI), pages 227–233. AAAI
Press, 1991.

12. I. P. Gent and B. M. Smith. Symmetry breaking in constraint programming. In
Euro. Conf. on Artificial Intelligence (ECAI), pages 599–603. IOS Press, 2000.

13. E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the rest will follow: Ex-
ploiting determinism in planning as satisfiability. In Nat. (US) Conf. on Artificial
Intelligence (AAAI), pages 948–953. AAAI, 1998.

14. P. Jeavons, D. A. Cohen, and M. C. Cooper. A substitution operation for con-
straints. In Int. Conf. on Principles and Practice of Constraint Programming (CP),
pages 1–9. Springer, 1994.

15. P. Jonsson and A. Krokhin. Recognizing frozen variables in constraint satisfaction
problems. Theoretical Computer Science (TCS), 329(1-3):93–113, 2004.

16. J. Köbler, U. Schöning, and J. Torán. The graph isomorphism problem: its com-
putational complexity. Birkhauser, 1993.

17. A. Lenstra and H. W. Lenstra. Algorithms in number theory. In J. van Leeuwen,
editor, The Handbook of Theoretical Computer Science, vol. 1: Algorithms and
Complexity. MIT Press, 1990.

18. C. M. Li. Integrating equivalency reasoning into Davis-Putnam procedure. In Nat.
(US) Conf. on Artificial Intelligence (AAAI), pages 291–296. AAAI press, 2000.

19. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

20. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature,
400:133–137, 1999.

21. U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Science, 7(2):85–132, 1974.

22. Ch. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
23. T. Pyhälä. Factoring benchmarks for SAT solvers. Technical report, Helsinki

university of technology, 2004.
24. T. J. Schaefer. The complexity of satisfiability problems. In ACM Symp. on Theory

of Computing (STOC), pages 216–226. ACM, 1978.

