
This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 1

Optimising Highly-Parallel Simulation-Based
Verification of Cyber-Physical Systems

Toni Mancini, Igor Melatti, and Enrico Tronci

Abstract—Cyber-Physical Systems (CPSs), i.e., systems comprising both software and physical components, arise in many
industry-relevant application domains and often mission- or safety-critical.
System-Level Verification (SLV) of CPSs aims at certifying that given (e.g., safety or liveness) specifications are met, or at estimating
the value of some Key Performance Indicators, when the system runs in its operational environment, that is in presence of inputs (from
the user or other systems) and/or of additional, uncontrolled disturbances.
In order to enable SLV of complex systems from the early design phases, the currently most adopted approach envisions the
simulation of a system model under the (time bounded) operational scenarios deemed of interest.
Unfortunately, simulation-based SLV can be computationally prohibitive (years of sequential simulation), since system model simulation
is computationally intensive and the set of scenarios of interest can be extremely large.
In this article, we present a technique that, given a collection of scenarios of interest (extracted from mass-storage databases or from
symbolic structures like constraint-based scenario generators), computes parallel shortest simulation campaigns, which drive a
possibly large number of system model simulators running in parallel in a HPC infrastructure through all (and only) those scenarios in
the user-defined (possibly random) order, by wisely avoiding multiple simulations of repeated trajectories, and thus minimising the
overall completion time, compatibly with the available simulator memory capacity.
Our experiments on SLV of Modelica/FMU and Simulink case study models with up to almost 200 million scenarios show that our
optimisation yields speedups as high as 8×. This, together with the enabled massive parallelisation, makes practically viable (a few
weeks in a HPC infrastructure) verification tasks (both statistical and exhaustive, with respect to the given set of scenarios) which
would otherwise take inconceivably long time.

✦

This article appears in IEEE Transactions on Software
Engineering, 2023. DOI: 10.1109/TSE.2023.3298432

1 INTRODUCTION

Cyber-Physical Systems (CPSs) consist of interconnected
hardware (the physical part) and software (the cyber part).
CPSs are ubiquitous in many industry-relevant applica-
tion domains, e.g., aerospace, automotive, energy, biology,
healthcare, among many others. In many CPSs (e.g., in em-
bedded systems), the software part consists of a (typically
microprogrammed) controller which continuously senses
the state of the system and sends commands to the hardware
actuators in order to achieve an envisioned goal condition
while satisfying some requirements.

System-Level Verification (SLV) of a CPS aims at verify-
ing that the whole system (i.e., the software and the hard-
ware working together) meets the given specifications when
running in its operational environment, i.e., in presence of
inputs and/or additional limited uncontrolled (but possible)
events (such as faults, noise signals, or changes in system
parameters, collectively referred to as disturbances).

Since industry-relevant CPSs are often mission- or
safety-critical, their SLV is of paramount importance to build
confidence on their robustness and, ultimately, to perform

• Authors are with the Computer Science Department, Sapienza University
of Rome, Italy.
E-mail: tmancini@di.uniroma1.it, melatti@di.uniroma1.it,
tronci@di.uniroma1.it

Manuscript received MMMMM DD, 2022

their qualification. To this end, SLV of CPSs is supported
from the early design stages by well-known model-based
design software tools, e.g., among the others, Simulink,
VisSim, Dymola, ESA Satellite Simulation Infrastructure
SIMULUS. Such tools allow the user to mathematically
model the physical parts of a CPS (the hardware model),
by means of, e.g., differential equations and/or algorithmic
snippets to manage, e.g., the occurrence of events, and en-
able their numerical simulation, both open-loop and closed-
loop. In particular, during closed-loop simulation, the actual
software for the controller continuously reads values from
the connected hardware model and decides control actions.
During simulation of CPS models, the above model-based
design tools also allow the user to inject a time series of
inputs and other disturbances stemming from the environ-
ment, representing an actual operational scenario.

By designing a proper set of scenarios deemed plausible
(given the operational environment), SLV of the system is
performed either by verifying that the CPS model satisfies
the given specifications under all of them (aka exhaustive
model checking, where exhaustiveness is intended with re-
spect to such set of scenarios), or, when they are too many to
be simulated exhaustively, the residual probability of errors
or expected values of suitable Key Performance Indicators
(KPIs) are estimated by simulating the system on a ran-
domly chosen subset of scenarios (statistical model checking
[3]).

1.1 Background and Motivations
Unfortunately, models of industry-relevant CPSs are often
defined as systems of highly non-linear and possibly stiff

http://doi.org/10.1109/TSE.2023.3298432
http://doi.org/10.1109/TSE.2023.3298432
mailto:tmancini@di.uniroma1.it
mailto:melatti@di.uniroma1.it
mailto:tronci@di.uniroma1.it

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 2

differential equations, and their complexity hinders the pos-
sibility of any symbolic reasoning (via, e.g., model checkers
for hybrid systems). As a result, the main workhorse for
SLV of such system models is their black-box simulation on
each single scenario, in order to check whether the required
system-level specifications are satisfied on all of them or to
estimate the values for the KPIs of interest.

Simulating a CPS model on a single scenario can take
from seconds to minutes, depending on the requested sim-
ulation time horizon and on the complexity of the system
model. For example, simulating our case study models on
a single scenario takes around 60 (Apollo Lunar Model Au-
topilot, ALMA, by Simulink), 80 (Buck DC-DC Converter,
BDC, by JModelica/FMU) and 40 seconds (Fuel Control
System, FCS, by Simulink) on average. This is due to the
frequent injections of disturbances and/or changes of pa-
rameters, as prescribed by the scenario being simulated. All
this makes simulation-based SLV campaigns of such CPSs a
complex and extremely time-consuming activity.

There are two major sources of complexity to deal with
when carrying out simulation-based SLV of CPSs.

The first source of complexity stems right from the defini-
tion of the set of scenarios deemed plausible or worth of
interest, against which the system model must be verified.
Traditionally, such scenarios (which collectively define the
CPS operational environment) are manually defined by system
verification teams together with domain experts, and stored
in large databases. When a new version of the CPS model
has to be verified, such scenarios are injected during simula-
tion and the resulting model trajectories are evaluated. Be-
yond being extremely time-consuming (possibly requiring
months of work from expert designers), this naïve opera-
tional environment definition activity is extremely fragile, as
it is hard to assure that the successful verification of the CPS
model against such scenarios is sufficient to certify absence
of errors. This is because it would be impossible to state
whether the defined set of scenarios is representative of all
the possible situations of interest.

To overcome this obstruction, previous work [28], [38]
proposed to lift the hand-crafted definition of operational
scenarios into the definition of a declarative constraint-based
specification of the system operational environment via an
automaton encoded in a high-level language. The set of
possible scenarios against which to verify the CPS model
is then defined as the set of time series of inputs and
other uncontrollable events encoded by accepting compu-
tation paths on such an automaton. Also, one such form
of automaton, named scenario generator in [38], allows the
efficient extraction of any of its entailed scenarios from
their unique indices. The definition of the CPS operational
environment by such high-level models greatly eases the
task of the verification engineers to capture all scenarios
deemed plausible, also allowing them to dynamically focus
on those scenarios satisfying additional constraints (see [38]
for examples), thus enabling prioritisation of the (typically
very long) verification activity.

Also, the availability of an environment model entailing
a possibly large, yet finite number of scenarios enables the
exhaustive (with respect to such an environment model)
verification of the CPS at hand. Indeed, when the CPS model
is exercised on all the (finite number of) scenarios entailed

by the environment model, a clear degree of assurance is at-
tained at the end of the verification process. Furthermore, by
properly randomising the scenario verification order, suitable
information on the probability that a yet-to-be-simulated
scenario exists for which the CPS shows an error (omission
probability) can be returned any-time during verification [32].
This allows the user to halt the verification process when the
residual probability of an error goes below a given threshold
(graceful degradation). Similar advantages can be achieved
when the environment model yields a too large or an infinite
number of scenarios, which would hinder the possibility to
verify the system on all of them. In such cases, statistical
model checking can be exploited by randomly sampling a
finite number of scenarios from the environment model, and
a statistically-sound degree of assurance that the property
under verification holds, or a statistically sound estimation
of the value of some KPIs can be generated at the end of the
(finite) verification process.

The second major source of complexity to deal with when
performing simulation-based SLV of CPSs is carrying out
the actual simulation of the system model on all the selected
scenarios (regardless on how they are selected). This is
because, to achieve a high-enough level of assurance on
its correctness, the system must be typically simulated on
a very large number of scenarios (e.g., in our case studies
we tackle verification processes on up to almost 200 million
scenarios), yielding prohibitive simulation times. Tackling
this last issue is the main focus of this article.

1.2 Contributions
We present an approach to compute optimised simulation
campaigns to perform SLV of CPSs in a highly parallel envi-
ronment (e.g., a large High-Performance Computing, HPC,
infrastructure), given identical simulators of the CPS model
and a (possibly large yet finite) collection of operational
scenarios. Our contributions are as follows.
Shortest simulation campaigns for highly-parallel CPS
verification. We present an algorithm that, given as input
a (typically very large) set of operational scenarios (either
generated from a high-level environment model or extracted
from a database), computes a set of optimised simulation
campaigns out of them, which drive multiple simulators of
the CPS (running in parallel) through all (and only) such
scenarios in the (possibly random) order chosen by the user,
while aiming at minimising the verification completion time.

Since the parallel execution of the computed simulation
campaigns requires no inter-process communication, very
large HPC infrastructures can be seamlessly exploited to
greatly shorten the overall verification activity.
Case studies. We show the applicability of our algorithm
on three case studies of industry-scale CPSs, by performing
their verification against very large sets of scenarios (up
to almost 200 million scenarios), using up to (virtually)
65 536 cores of a HPC infrastructure (that is 1024 64-core
machines), and evaluate the benefits of our optimised simu-
lation campaign computation algorithm and the scalability
of our overall approach.

Thanks to our overall architecture which envisions
a simulator-independent campaign computation algorithm
and simulator-specific drivers, we can virtually control any

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 3

available simulation engine. We have currently developed
(and successfully used in our experiments) drivers for the
widely popular simulation platforms Simulink and JModel-
ica/Functional Mock-Up Unit (FMU).

2 FORMAL FRAMEWORK

We denote with R, R0+ and R+ the sets of, respectively, all,
non-negative, and strictly positive real numbers, and with
N+ and N the sets of, respectively, strictly positive and non-
negative integer numbers. Also, given two sets A and B, we
denote by AB the set of functions from B to A.

We now briefly describe how we model our System
Under Verification (SUV), its operational environment, and
the property to be verified. For brevity, formal definitions
(including notation recap) and statements as well as their
proofs are delayed to Appendix A.
System Under Verification (SUV). We assume our (black-
box) SUV H to be a deterministic, time-invariant, causal,
state-input-output dynamical system (e.g., [29], [31], [48])
over a continuous or discrete time set T (hence T is either
N or R0+, or an interval thereof), and whose input space
U defines the set of possible values for the user inputs and
the other uncontrollable events H is subject to, e.g., faults
in sensors and actuators or changes in system parameters.
Thus, H takes as input a time function u ∈ UT, defining the
SUV input values at all time points (u is called an operational
scenario, or just scenario).
Property to be verified. For maximum generality, we
assume that the property to be verified and/or the KPIs to
be computed under each scenario are encoded as a monitor
within H. The monitor observes the state of the system and
checks whether the property under verification is satisfied
and/or computes the values of the KPIs of interest. The
use of monitors as black boxes gives us maximum flexibility
and it allows us to abstract away the actual formalism used
to define the property (e.g., it is immediate to define as
monitors bounded safety and bounded liveness properties
as well as checkers for formulas in any temporal logic; see,
e.g., [27], [43] and citations thereof). Since the monitor output
is all we need to carry out our verification task, in the sequel
we assume that the only outputs of the SUV are those from
the monitor.
System-Level Verification (SLV). An SLV problem is a pair
π = (H,U), where H is a SUV (with an embedded monitor)
and U is a set of scenarios for it. The answer to SLV problem
π is the collection of the outputs of the SUV (monitor)
produced at the end of each scenario u ∈ U , where u is
injected in H starting from its initial state.

Our definition of (answer to an) SLV problem is very
general and, depending on how the SUV monitor is defined,
seamlessly accounts for verification activities aimed at either
checking whether a scenario in U exists which raises an error
in the SUV (error scenario), or at computing statistics on (e.g.,
expected values of) some KPIs. Namely, to find an error
scenario, it is enough to define the monitor to return PASS or
FAIL at the end of each of them, depending on whether the
scenario satisfies or violates the property under verification.
Conversely, to compute any sort of statistics on any KPIs of
interest, it is enough to define the monitor to compute and
output such KPI values at the end of each scenario.

SUV operational environment. According to our focus
on verification tasks where numerical simulation is the only
means to get the trajectory of the SUV when fed with
an input scenario, we will assume that the set U is finite
and finitely representable, and that each scenario is time
bounded. Hence, we assume that the set of values taken
by input scenarios in U (actually, for simplicity, the set U
itself) is finite (and, without loss of generality, ordered) and
scenarios in U are defined via piecewise constant input time
functions having discontinuities at time points multiple of
a given (arbitrarily small) time quantum τ ∈ T \ {0}. Such
scenarios can be conveniently represented as input traces
(Definition 1).

Definition 1 (Input trace). An input trace u with values in U
is a finite sequence (u0, . . . , uh−1) where all ui belong to U. Value
h is the trace horizon.

Given time quantum τ ∈ T \ {0}, an input trace
u = (u0, . . . , uh−1) is interpreted as the bounded-horizon
piecewise constant time function u ∈ U[0,τh) defined as
u(t) = u⌊ t

τ ⌋
for t ∈ [0, τh). From now on we assume that a

time quantum τ is given, and thus interchangeably refer to
input traces and to their uniquely associated time-bounded
piecewise constant time functions.

Our assumptions above naturally apply to scenarios
whose values denote events such as user requests or faults.
However, scenarios encoding input time functions assuming
continuous values can be tackled by means of a suitable dis-
cretisation of their domains, whilst smooth continuous-time
input functions (e.g., additive noise signals) can be managed
as long as they can be cast into (or suitably approximated
by) finitely parametrisable functions, in which case the input
space actually defines such a (discrete or discretised) param-
eter space. Examples of finite parameterisations of the SUV
input space are those defining limited, quantised Taylor
expansions of continuous-time inputs, or those defining
quantised values for the first coefficients (those carrying
out the most information) of the Fourier series of a finite-
bandwidth noise, see, e.g., [1], [34].

As argued in [38], our assumptions are in line with
an engineering (rather than purely mathematical) point of
view, where man-made CPSs need to satisfy the properties
under verification with some degree of robustness with re-
spect to the actual input time functions (see, e.g., [1], [16]
and references thereof). Our case studies in Section 6 contain
uses of several of such features, and show that our setting
can be easily met in practice.

3 SUV SIMULATORS

In our simulation-based setting, we aim at performing SLV
of our SUV by driving the execution of a simulator of the
SUV model (in e.g., Simulink, Modelica) via the simulation
engine scripting language, which also takes care of injecting
piecewise constant input time functions representing scenar-
ios. By extending the formal notion of SUV simulator in [31],
[34], we provide a general mathematical framework that al-
lows us to link scenarios given as input to a SUVH (as input
traces encoding piecewise-constant input time functions) to
inputs for a simulator of H (simulation campaigns).

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 4

Formal definitions as well as statements and their proofs
in this section are delayed to Appendix B.

A simulator for SUV H is a tuple (H,W), where W
denotes the set of simulator states. Each w ∈ W has the
form w = (x,u,M), where: x is a state of H; u is an
input time function (an input trace in our setting) for H;
M (simulator memory) is a finite map whose elements are of
the form: [λ 7→ (x′,u′)], with λ ∈ Λ being an identifier from
a countable set (unique in M), x′ a state of H, and u′ is an
input trace.

A simulator S can take the following commands: OUTPUT,
which reads the output of S in the current state; LOAD(λ),
which loads from memory the state associated to identifier λ
and makes it the current simulator state (and raises an error
if such a state is not in memory); STORE(λ), which stores
into memory the current simulator state under identifier
λ (and raises an error if λ already occurs in memory);
FREE(λ), which frees simulator memory entry λ (and raises
an error if no such entry exists); RUN(u, t), which injects
input u and advances simulation by time t ∈ T. The time
advancement due to a command is the time simulated by S
when executing it, and is t for RUN(u, t) and 0 for all the
other commands.

A simulation campaign χ for S is a sequence
CMD0(args0) . . . CMDc−1(argsc−1) of simulator commands
(with their arguments). To χ we can univocally associate:
(i) the sequence of states traversed by the simulator while
executing it; (ii) the length len(χ), which is the sum of
the time advancements of its commands; (iii) the required
simulator memory mem(χ), which is the maximum number
of entries in the simulator memory among the traversed
states; (iv) the output sequence, which is the sequence of the
results of its OUTPUT commands (i.e., the outputs of S in the
states where an OUTPUT command is issued). A simulation
campaign is executable if it does not raise errors.

Proposition 1 links inputs to a simulator S for H (i.e.,
simulation campaigns) to inputs for H (input time func-
tions), and lays the foundations to our SLV approach, en-
suring that we can carry out a verification activity on H by
properly driving its simulator S. This will be the focus of
Section 4.

Proposition 1. Let S be a simulator for H, χ an executable sim-
ulation campaign for S , and w0, . . . , wc the associated sequence
of simulator states. For each i ∈ [0, c], the input time function ui

in wi = (xi,ui,Mi) is such to drive H from its initial state to
xi.

4 SIMULATION-BASED SLV
To perform simulation-based SLV of H over n input traces
U we need a simulator S = (H,W) for H and an executable
simulation campaign χ for S that somewhat drives S along
the scenarios for H encoded by traces of U and collects the
simulator outputs at the end of each scenario.

To this end, Definition 2 allows us to associate to any
executable simulation campaign χ for S the sequence U(χ)
of SUV scenarios (as piecewise constant input time func-
tions) for H actually explored by χ. Full definitions and
statements in this section as well as their proofs are delayed
to Appendix C.

Definition 2 (Sequence of input time functions associated
to a simulation campaign). The sequence of input time
functions associated to simulation campaign χ containing n
OUTPUT commands is U(χ) = uj0 , . . . ,ujn−1 , where uji is the
input time function associated to the state where the simulator
executes the i-th OUTPUT command of χ.

Definition 3 formalises the notion of a simulation cam-
paign aimed at computing the answer to an SLV problem.

Definition 3 (Simulation campaign for an SLV problem).
A simulation campaign χ for SLV problem π = (H,U) is
an executable campaign for a simulator S of H, such that the
sequence U(χ) = uj0 , . . . ,ujn−1 of its associated input time
functions is a permutation of U .

A simulation campaign χ for π = (H,U) can be used
to compute the answer to π by executing χ on a simulator
S for H and by collecting the simulator outputs during χ.
If π aims at finding scenarios witnessing a property vio-
lation, the input function associated to any simulator state
whose output is FAIL constitutes such an error scenario.
Conversely, if π amounts to compute statistics on some KPIs
of interest, the KPI values returned as the outputs of χ (at
the end of each simulated scenario) can be used to build
such statistics.

4.1 Shortest simulation campaigns
Among all the simulation campaigns for a given SLV prob-
lem, the shortest campaigns whose required simulator mem-
ory is bounded by a given constant m ∈ N+ (the simulator
memory capacity) have a special interest (Definition 4).

Definition 4 (Shortest (m-memory) simulation campaign
for a SLV problem). Let m ∈ N+ ∪ {∞}. A shortest m-
memory simulation campaign χ for π is a simulation campaign
for π such that mem(χ) ≤ m and for which no other simula-
tion campaign χ′ for π exists such that len(χ′) < len(χ) and
mem(χ′) ≤ m. When m = ∞ (i.e., we do not put any limitation
on the required simulator memory capacity to execute χ), we call
χ simply a shortest simulation campaign for π.

By definition, any shortest m-memory simulation cam-
paign for π is not shorter than any shortest (m + 1)-
memory simulation campaign for π. Also, any shortest ∞-
memory simulation campaign for π would actually require
only a finite simulator memory capacity, which is upper
bounded by the number m∗ of the distinct longest se-
quences of disturbances occurring as prefixes of multiple
traces of U (Longest Shared Prefixes, LSPs, see forthcoming
Definition 13). Hence, any shortest ∞-memory simulation
campaign for π would actually be a m∗-memory simulation
campaign.

Computation of shortest simulation campaigns can be
pursued by recalling that our SUV H is deterministic and
needs to be simulated, for each scenario (input trace),
starting from its initial state x0. Hence, if two input traces
ua,ub ∈ U have a common prefix, the SUV state at the end
of such a prefix may be stored during simulation of the first
simulated trace (e.g., ub) and loaded back before simulating
the other (e.g., ua), whose inputs could then be injected from
that point on only. This avoids repeated simulation of the
common prefix.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 5

This form of compression is particularly effective in
practice, as the occurrence of multiple scenarios sharing a
common prefix is very frequent when defining SUV op-
erational environments. For example, in our case studies,
the shortest simulation campaigns, as computed by our
algorithm, are shorter than naïve ones by a factor of 5 to 8.
This translates in similar speed-ups of the required overall
simulation time (see Section 6).

4.2 Randomised simulation campaigns
Proposition 2 states that, if we put no limitation on the
required memory capacity, a shortest simulation campaign
exists for any ordering of the scenarios of the SLV problem
at hand.

Proposition 2. Let π = (H,U) be a SLV problem (|U| = n) and
S be a simulator for H. For any permutation uj0 , . . . ,ujn−1 of
input traces of U , there exists an executable shortest simulation
campaign χ for π on S, such that U(χ) = uj0 , . . . ,ujn−1 .

However, the choice of the scenario verification order
is an important issue. For example, as long as this order
is deterministic, no partial conclusion can be drawn, dur-
ing simulation, about the absence of error scenarios. This
is because in a verification setting we need to adopt an
adversarial model in which the adversary will place the
single error scenario of U as the last scenario simulated
by χ. Previous work [29], [32] shows that the upfront
availability of all scenarios to be verified (set U) allows us
to adopt a simple yet very effective approach to draw, at
any time during simulation, mathematically-sound partial
conclusions on the probability that a property violation will
be witnessed by a yet-to-be-simulated scenario. The idea is
to choose our scenario verification order uniformly at random
among all possible orders. With such a randomised simulation
campaign, after having verified the absence of errors on the
first j ∈ [0, n] scenarios of U in the generated random order
(where n = |U|), the probability that an error will be found
in a yet-to-be-simulated scenario (omission probability) is
upper-bounded by 1− j

n . With this approach, we effectively
conjugate exhaustiveness with randomness.

Randomising the scenario verification order is also re-
quired when approximations of statistics (e.g., expected
values) of KPIs for each scenario are to be computed with
guaranteed accuracy via statistical model checking.

Efficiently computing a shortest, possibly randomised
simulation campaign for our SLV problem is the purpose
of Section 5.

4.3 Parallel simulation campaigns
As anticipated in Section 1.1, a major efficiency bottleneck
for simulation-based SLV of industry-relevant CPSs is sim-
ulation time. This is due both to the typically very large
number of scenarios to simulate (e.g., up to almost 200
million in our case studies) and to the time needed to
numerically simulate the CPS model (our SUV) on each such
scenario (up to 80 seconds in our case studies).

The answer to an SLV problem π = (H,U) (i.e., the
collection of the simulator outputs at the end of each sce-
nario) can be computed by arbitrarily partitioning U into
k ∈ N+ subsets (slices) U0, . . . ,Uk−1 (where k is the number

of available computational nodes), and by computing and
taking the union of the answers to the k smaller SLV
problems πi = (H,Ui), i ∈ [0, k − 1]. In our simulation-
based setting, this can be achieved using k simulators for
H running as k independent processes (e.g., in parallel
in a HPC infrastructure) and independently driven by k
simulation campaigns χ1, . . . , χk, where, for all i, χi is
a simulation campaign for πi. Definition 5 formalises this
concept.

Definition 5 (Parallel simulation campaign for an SLV
problem). A k-parallel simulation campaign for SLV problem
π = (H,U) is a tuple Ξ = (χ0, . . . , χk−1) such that there exists
a partition of U into sets U0, . . . ,Uk−1 such that, for all i, χi is a
simulation campaign for πi = (H,Ui).

The length of χ is len(χ) = maxk−1
i=0 len(χi). Given m ∈

N+ ∪{∞}, Ξ is a k-parallel m-memory simulation campaign
if all χis are m-memory simulation campaigns.

The concepts of shortest and shortest m-memory simu-
lation campaign are straightforwardly extended to parallel
simulation campaigns.

As shown in [32], when the SLV activity seeks to certify
absence of error scenarios, if all χis of a parallel simulation
campaign Ξ = (χ0, . . . , χk−1) are randomised (i.e., each χi

implements a verification order of the scenarios in Ui chosen
independently and uniformly at random among all possible
orders), then, at any time during the parallel simulation-
based SLV activity, where χi has verified the absence of
errors on the first ji ∈ [0, ni] scenarios of Ui in the generated
random order (where ni = |Ui|), the omission probability
(i.e., the probability that an error will be found in a yet-to-be-
simulated scenario) is upper-bounded by 1−mink−1

i=0

(
ji
ni

)
.

5 PARALLEL COMPUTATION OF PARALLEL SIMU-
LATION CAMPAIGNS

We are now ready to present our algorithm to compute
a parallel simulation campaign Ξ = (χ0, . . . , χk−1) for the
SLV problem π = (H,U) at hand. The computed Ξ can be
executed on k simulators for H running independently on k
nodes of a HPC infrastructure.

Full definitions, additional pseudocode and its descrip-
tion, as well as proofs of statements in this section are
delayed to Appendix D.

5.1 Input
Our algorithm takes as input a collection U of n ∈ N+ input
traces (encoding the scenarios on which the SUV must be
verified) and the memory capacity m ∈ N+ of each of the k
simulators in terms of the maximum number of states that
each simulator can keep simultaneously stored.

Input traces are given either explicitly in the form of
a database in mass memory, or symbolically, by means
of a scenario generator, as designed in [38]. In particular,
a scenario generator G is a symbolic data structure built
from a set of requirements (or constraints), in turn defined
by means of multiple automata (monitors). From G, input
traces of any horizon satisfying those requirements can be
efficiently extracted from their unique indices. Namely, a
scenario generator G offers two main functions: nb_traces()

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 6

and trace(). Function nb_traces(G) returns the number n of
input traces entailed by G, while, for j ∈ [0, n−1], trace(G, j)
extracts the j-th trace (in lexicographic order) from G. When
the set of scenarios is given via a scenario generator, the
input traces are given as a set of integers I representing
unique indices of traces to extracted from G. In other words,
when a scenario generator are involved, our set of input
traces is defined as U = {trace(G, j) | j ∈ I}.

5.2 Enabling parallelism

The typically very large number of input traces implies that
U cannot be represented explicitly in central memory, and
any form of global optimisation to find a shortest parallel
m-memory simulation campaign would be unviable. Hence,
our algorithm makes wise use of the available RAM and par-
allel computational nodes, and exploits suitable heuristics
in order to compute an as-short-as-possible randomised m-
memory simulation campaign. However, when the available
capacity m of each simulator memory is above a certain
threshold which depends on U , the algorithm will indeed
compute k provably shortest m-memory simulation campaigns
χ0, . . . , χk−1 (Proposition 3).

Computing an as-short-as-possible parallel m-memory
simulation campaign needs to heavily exploit the presence
of multiple traces sharing a prefix. Hence, when splitting U
into slices, it is important to keep as much as possible in the
same slice traces sharing long common prefixes.

To this end, our algorithm works best when input traces
can be accessed in lexicographic order (according to the total
order defined over the SUV input space U), since in this
case it can easily keep in the same slice traces that are close
together according to the lexicographic order.

Accessing traces in lexicographic order is immediate
when they are extracted from a scenario generator, since it
would be enough to access them in ascending order of their
indices. Hence, in this case slicing is performed by simply
partitioning of the set of indices I of the traces selected for
SLV into k evenly-long sequences I0, . . . , Ik−1, where each
such sequence defines trace indices in ascending order and,
for each i > 0 the trace indices in the i-th slice are all larger
than those in the (i−1)-th slice. The i-th slice of traces would
then simply be: Ui = {trace(G, j) | j ∈ Ii}, i ∈ [0, k − 1].

Conversely, when input traces are extracted from a
database, standard mass-memory sorting algorithms are
exploited to reorder them lexicographically. Even when the
number of traces is very large, such mass-memory sorting
algorithms offer good scalability and can be effectively used
for this purpose. In particular, as shown in Section 6.4, the
advantages (in terms of savings in the simulation time)
achieved by performing SLV using optimised simulation
campaigns heavily outperform the additional cost of order-
ing them if needed, and this justifies investing computation
time in such a preprocessing.

For each slice, a desired, possibly randomised, verifica-
tion order can be easily defined by the user. For example,
a uniformly random verification order can be computed by
computing a random permutation of trace indices (when
traces are extracted from a scenario generator) or of their
keys (when pre-sorted in mass-memory databases, see, e.g.,
[32]).

5.3 Computing a simulation campaign from each slice
From this point on, computation of the parallel simulation
campaign Ξ = (χ0, . . . , χk−1) proceeds embarrassingly in
parallel, using up to k independent computational nodes,
one for each slice. Our algorithm to compute a simulation
campaign for a single slice Ui is sketched as Algorithm 1.

1 input Ui, slice of traces in desired (e.g., random) order
input τ ∈ T, time quantum input m ∈ N+, the
simulator memory capacity

2 output χi, the output simulation campaign

3 χi ← an empty sequence of commands;
4 T ← LSPT(Ui) ; /* build Longest Shared Prefix Tree */
5 j ← 0; /* trace counter */
6 foreach u ∈ Ui (in the given order) do
7 append sim_cmds(u, j, T) to χi; j++;
8 return χi;

Algorithm 1: Simulation campaign computation for a
slice.

5.3.1 Longest Shared Prefix Tree
The first step of Algorithm 1 (function LSPT()) is to build
a data structure called Longest Shared Prefix Tree (LSPT),
representing the longest prefixes shared by multiple traces.

In the following, given two (possibly empty) sequences
of inputs ua and ub (i.e., sequences of values of U), we
denote by ua ⊑ ub (respectively, ua ⊏ ub) the fact that ua is
a prefix (respectively, proper prefix) of ub.

A Longest Shared Prefix (LSP) for Ui is a (possibly empty)
sequence u of inputs such that there exist two traces ua and
ub in Ui such that: u ⊑ ua, u ⊑ ub, and there exists no u′ in
Ui such that u ⊏ u′, u′ ⊑ ua, and u′ ⊑ ub. The intelligent
storing of the states reached by the simulator after having
executed such LSPs (under the available simulator memory
capacity constraints) would avoid their recomputation, thus
producing shorter simulation campaigns.

A Longest Shared Prefix Tree (LSPT) for Ui (see Ap-
pendix D.1.1 for formal statements, details, and pseu-
docode) is a tree T = (V, parent). Nodes (set V) denote
distinct LSPs of Ui and the parent node parent(u) of node
u (if one exists) is such that parent(u) ⊏ u, and no sequence
u′ exists as a node of T such that parent(u) ⊏ u′ ⊏ u. The
latter condition implies that a LSPT is a rooted tree.

The depth of LSPT node u = (u0, . . . , ud−1) is depth(u) =
d, which represents the time point dτ reached by the sim-
ulator (starting from its initial state) after having injected
input sequence u. The depth of the node associated to the
empty sequence is zero. To each node (u0, . . . , ud−1) ∈ V , the
number of traces in Ui having (u0, . . . , ud−1) as a (proper or
non-proper) prefix is stored as ntraces(u0, . . . , ud−1).

A LSPT T for Ui is complete if no LSPT for Ui exists whose
nodes are a proper subset of those of T . The size of a LSPT
is the number of its nodes.

To compute a complete LSPT for Ui in central memory,
function LSPT() scans Ui in lexicographic order, since, under
this ordering, deciding which trace prefixes are nodes of the
tree is straightforward and memory-efficient.

To keep an as small as possible RAM footprint of the
LSPT, the algorithm represents in central memory each of its

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 7

nodes (u0, . . . , ud−1) by a unique identifier λ(u0, . . . , ud−1).
Unique identifiers for each trace prefix are available for
free when traces are extracted from a scenario generator. If
traces are taken from a database, any efficiently computable
injective function of finite sequences of input values (or
even a cryptographic hash function, when the probability
of conflicts is small enough) can be used.

5.3.2 Generation of simulation campaign commands

Algorithm 1 proceeds at generating an optimised simulation
campaign χi which would drive simulator Si along all the
input traces according to the chosen (possibly random) or-
der, still trying to save as many simulation steps as possible,
compatibly with simulator memory capacity constraints.

To this end, the input traces Ui are considered se-
quentially in the given order. For each trace u, function
sim_cmds() is invoked to append to χi a sequence of com-
mands to simulate it from the best intermediate state avail-
able in the simulator memory (see below). During gener-
ation of simulator commands, for each LSPT node λ, the
algorithm keeps a boolean flag stored(λ) (initialised to false)
whose value reflects, at any point during the computation
of χi, the fact that state λ would be available or not in
the memory of Si at that point during the execution of
χi. Namely, stored(λ) is set to true (respectively, false) when
issuing a STORE(λ) (respectively, FREE(λ)) command.

Generating trace simulation commands. Algorithm 2
shows the pseudocode of function sim_cmds() which issues
the actual commands aimed at simulating trace u, which are
appended to χi. The function proceeds as follows:

1. Selects λload, the state corresponding to the longest
prefix of u that, at the current point of the prospective
simulation, would be available in the simulator memory and
appends command LOAD(λload) to χi, to load it back.

2. Revises the nodes of the LSPT associated to prefixes
of u (proceeding backwards from the full u). For each such
LSPT node λq , value ntraces(λq) is decremented (thus mem-
orising the fact that such prefix will occur in one less future
trace). If ntraces(λq) becomes zero, the algorithm knows that
the input sequence associated to λq will not occur as a prefix
in any future trace, and removes λq from the LSPT (which,
since prefixes of u are processed backwards from the entire
u, is a leaf of the LSPT). Also, if λq is known to be stored
in the simulator memory at this point of the execution of χi

(i.e., stored(λq) = true), it appends to χi command FREE(λq)
to free-up the simulator memory.

3. Appends to χi a RUN command for each maximally
long constant portion of u such that no intermediate state
traversed by the simulator needs to be stored to shorten
simulation of future traces (i.e., function worth_storing() re-
turns false for it).

4. If the state reached by the simulator after each RUN
command is worth to be stored as it can shorten simulation
of a later trace (this implies it is a node of the LSPT), the
function proceeds at storing it (see below).

Storing intermediate simulation states. Given the limited
capacity m of the simulator memory, the decision of which
LSPT simulator states will be actually stored must be taken
wisely. This is charge of function worth_storing().

1 function sim_cmds(u, j, T)
2 input u = (u0, . . . , uh−1), current (j-th) trace
3 input T = (V, parent), Longest Shared Prefix Tree

output sequence of sim. commands for u
4 if j = 0 then load← 0; /* first trace */
5 else /* not first trace */
6 load← max q ∈ [0, h] s.t.
7 λload = λ(u0, . . . , uq−1) ∈ V ∧ stored(λload);
8 issue LOAD(λload);
9 for q from h− 1 downto 0 s.t.

λq = λ(u0, . . . , uq−1) ∈ V do /* revise T */
10 ntraces(λq)--;
11 if ntraces(λq) = 0 then

/* λq won’t occur in future traces */
12 if stored(λq) then
13 issue FREE(λq); stored(λq) ← false;
14 remove λq from V ; /* λq is leaf in T */

/* All nodes still in T will occur in future traces */
15 start← load;
16 while start < h do
17 end← max e ∈ [start, h− 1] s.t. ∀q∈[start+1, e]
18 uq=uq−1∧¬worth_storing(λ(u0 , . . . , uq−1), T);

19 issue RUN(ustart , (end− start + 1)τ) ;
20 start← end + 1;
21 if start ≤ h ∧ λstart = λ(u0, . . . , ustart−1) ∈ V ∧

worth_storing(λstart, T) then
22 do_store(λstart, T , m, χi) ; /* possibly issues

FREE(λ′) for some λ′ s.t. stored(λ′) and sets
stored(λ′) to false, before issuing
STORE(λstart) */

23 stored(λstart)← true;
24 issue OUTPUT;

Algorithm 2: Function sim_cmds().

Since the LSPT has no information on the order with
which simulator states represented by LSPT nodes will
occur in Ui (such data would be too large to be kept in
RAM), any approach to compute an optimal plan to decide
which intermediate state to store and free (and when to do
that during the execution of the simulation campaign) is
clearly not viable. Hence, the function proceeds heuristically.

In particular, worth_storing(λ, T) works as follows. If λ
is not a LSPT node or is expected to be already stored in
memory at that point of the execution of the simulation
campaign (i.e., stored(λ) = true), then worth_storing() returns
false; otherwise, if the simulator memory is expected to have
room to accommodate an additional state (i.e., the number
of LSPT nodes λ′ such that stored(λ′) = true is < m), then
worth_storing() returns true.

In case the simulator memory is expected to be full at
that point of the execution of the simulation campaign, then
the function decides whether it is best to make space for λ
by freeing up another simulator state λ′ already in memory,
or to rather ignore the request of storing λ in the first place.

To this end, the function searches for a currently stored
state λ′ whose associated node in the LSPT is not the root
node and has the smallest depth-difference with respect
to its parent node, where the depth-difference of λ′ is

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 8

depth(λ′) − depth(parent(λ′)) > 0. Since the depth-difference
of a simulator state defines the additional number of τ -
simulation steps needed by the simulator to reach that state
when starting from the state represented by its parent node
in the LSPT, λ′ is a currently stored state which could be
used to shorten simulation of a future trace, but whose
removal from simulator memory minimises the number of
additional τ -simulation steps needed to recompute it (from
the state associated to its parent node in the LSPT).

In case the depth-difference of λ′ is less than that of λ,
then the function decides that it is worth removing λ′ from
the simulator memory to make room for λ, and returns true.
Otherwise, the function knows that freeing-up λ′ to make
room for λ would cost more (in terms of additional τ -long
simulation steps to recompute λ′ from the state represented
by its parent) than simply ignoring the request to store λ,
and returns false.

When worth_storing() returns true, function do_store()
appends STORE(λ) to χi, preceded by FREE(λ′) in case
worth_storing() has selected λ′ as the state to be freed-up
(in which case stored(λ′) is set to false as well).

In order to efficiently find λ′, the currently stored LSPT
nodes are indexed so as to retrieve efficiently those having
minimal depth-difference with respect to their parents.

The following result holds (see Appendix D.2 for the full
statement and proof).

Proposition 3 (Correctness of Algorithm 1). Let π = (H,U)
be an SLV problem for SUV H, with input traces U being
associated to time quantum τ , and let m be a positive integer.
Given any partition {U0, . . . ,Uk−1} of U , let Ξ = (χ0, . . . , χk−1)
be the k-parallel simulation campaign such that χi is computed
by Algorithm 1 on inputs Ui (under any user-defined order), τ ,
and m. We have that:

1. For all i ∈ [0, k − 1], the sequence U(χi) is Ui;
2. There exists m∗ ∈ N+ such that, if m ≥ m∗, all χis are

shortest m-memory simulation campaigns.

Point 1. implies that Ξ is a k-parallel m-memory simu-
lation campaign for π. Each χi drives an independent copy
of a simulator of SUV H along the scenarios in Ui in the
chosen, possibly random, order. In the latter case, an upper
bound to the omission probability can be computed at any
time during parallel simulation (Section 4.3).

6 IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section we outline our implementation of the parallel
algorithm of Section 5 and analyse its performance and
scalability on three real case studies.

6.1 Implementation
We implemented our algorithm as a C-language tool which
takes as input positive integers k (number of slices) and
m (memory capacity of each simulator), and the set of
input traces U for which a parallel campaign is sought.
In our experiments we extracted the set of input traces
from scenario generators, defined as discussed in [38]. The
computed campaign can be executed on k simulators for
the SUV H, running independently on k computational
nodes. Each simulator is steered by a driver which receives

the simulation campaign as input. This driver is the only
simulator-dependent component of our tool pipeline. We
implemented drivers for two popular simulators, namely:
Simulink and JModelica/FMU. Additional drivers can be
easily written along the same lines.

6.2 Case studies
We selected three industry-relevant SUV models defined in
the language of two popular simulators, namely Simulink
and Modelica.

6.2.1 Buck DC-DC Converter (BDC)
It is a mixed-mode analog circuit converting the DC input
voltage (denoted as Vi) to a desired DC output voltage (Vo),
often used off-chip to scale down the typical laptop battery
voltage (12–24 V) to the few volts needed by, e.g., a laptop
processor (the load) as well as on-chip to support dynamic
voltage and frequency scaling in multicore processors (see,
e.g., [40]). A BDC converter is self-regulating, i.e., it is able
to maintain the desired output voltage Vo notwithstanding
variations in the input voltage Vi or in the load R. We used
a Modelica model of the fuzzy logic–based BDC controller
of [47], converted into an FMU 2.0 object via the JModelica
extension in [45].

6.2.2 Apollo Lunar Model Autopilot (ALMA)
It is a Simulink/Stateflow model defining the logic that
implements the phase-plane control algorithm of the au-
topilot of the lunar module used in the Apollo 11 mission.
The Module is equipped with actuators (16 reaction jets to
rotate the Module along the three axes) subject to temporary
unavailabilities. The controller takes as input requests to
change the Module attitude (i.e., to perform a rotation along
the three axes) and computes which reaction jets to fire to
obey each request.

6.2.3 Fault Tolerant Fuel Control System (FCS)
It is a Simulink/Stateflow model of a controller for a fault
tolerant gasoline engine, which has also been used as a case
study in [11], [25], [26], [28], [32], [33], [55]. The FCS has four
sensors subject to temporary faults, and the whole control
system is expected to tolerate single sensor faults.

6.3 Experimental setting
We defined a scenario generator for each SUV, entailing
input traces (time quantum τ = 1 time unit, t.u.) with the
properties listed in Table 1. Several constraints have been
enforced on the input traces. This allows us to focus the SLV
activities on clearly selected portions of the space of inputs
and to keep the overall number of traces under control. The
enforced constraints are detailed in Appendix E. Here, we
just point out that we experimented with the optimisation
of parallel simulation campaigns for up to around 50 (BDC),
100 (ALMA) and 200 (FCS) million traces.

To show scalability of our algorithm when computing
optimised parallel simulation campaigns as well as the over-
all savings in simulation time provided by our approach to
SLV, we exploited (virtually) up to 1024 identical 64-core
machines (CPU: AMD EPYC 7301, RAM: 256GB) of our HPC

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 9

SUV |U| horizon n. traces constraints on traces

BDC 25 60 t.u. 49 971 109 Appendix E.1
ALMA 432 100 t.u. 107 535 209 Appendix E.2

FCS 6 100 t.u. 195 869 671 Appendix E.3

Table 1: Scenario generators for our case studies.

infrastructure, thus our maximum number of slices k has
been set to 65 536.

Since actual simulation of the generated campaigns in
all the considered settings would be prohibitively long,
simulation time of each campaign has been estimated as
follows. For each SUV, we generated and actually simu-
lated a random campaign of 100k commands, where each
command (LOAD, STORE, FREE, OUTPUT, RUN for all needed
durations) was evenly represented. We then computed the
average time needed by the simulator to execute each single
command, and used such expected values (standard devi-
ation showed to be negligible) to estimate the completion
time of each campaign.

6.4 Experimental results

Our experimental results are summarised in Figure 1 (BDC),
Figure 2 (ALMA) and Figure 3 (FCS). We computed sev-
eral randomised parallel simulation campaigns for each case
study, one of each of several random subsets of all the traces
entailed by our scenario generator.

In order to show performance and effectiveness of simu-
lation campaign optimisation in contexts ranging from sta-
tistical model checking to random exhaustive verification,
we sampled trace subsets by fixing their size from 25% to
100% of the overall number of traces.

Each experiment has been repeated for various amounts
of simulator memory available (1 state, meaning no opti-
misation at all, since only one simulator state –typically
the initial state– can be be stored and loaded back, up
to m∗, the maximum number of states required in each
experiment for maximum optimisation). Given the presence
of randomisation, all experiments have been repeated with 5
different random seeds, and all results have been averaged.

6.4.1 Scalability of the campaign computation algorithm
The first (left-most) column of Figures 1 to 3 shows the time
(in seconds) needed by our algorithm to compute a parallel
simulation campaign for each SUV and each combination of
values for the number of traces (row), the number of parallel
processes (slices), and the amount of simulator memory
(different line shapes).

The plots show that the computation time ranges from a
few seconds to a few hours, and this time is always negligible
when compared to the time savings that such optimisation
yields in terms of simulation time (see the corresponding
plots on right-most column, where time is expressed in days
of parallel computation).

6.4.2 Campaigns efficiency with respect to parallelisation
The second column of Figures 1 to 3 shows how efficiency
of the computed campaigns is preserved when a higher
number of parallel processes are expected to be used in the

verification process (hence, the input traces are split in a
higher number of slices).

Namely, for each SUV and each combination of values
for the number of traces n (row), the number of parallel
processes (slices) k, and the amount of simulator mem-
ory m (different line shapes), the charts plot the average
value (among our randomised experiments) of the following
quantity: sim_time(χn,1024,m)×1024

sim_time(χn,k,m)×k , which measures, in terms
of (estimated) simulation time (sim_time), the efficiency of
the parallel simulation campaign χn,k,m (which verifies n
random traces in parallel on k processes assuming that each
simulator can keep m states simultaneously stored) with
respect to the corresponding parallel simulation campaign
χn,1024,m (which verifies the same traces under the same
assumptions regarding the simulator memory, but running
on just 1024 parallel processes, our minimum value).

The plots show how efficiency is always very high, and,
even when it degrades to a bit less than 90%, the induced
overhead in simulation time is always negligible when com-
pared to the very large time savings yielded by exploiting a
higher number of parallel simulators.

6.4.3 Campaigns efficiency with respect to available simu-
lator memory
The third column of Figures 1 to 3 shows how efficiency of
the computed campaigns is preserved when reducing the
memory available on each simulator.

Namely, for each SUV and each combination of values
for the number of traces n (row), the number of parallel
processes (slices) k, and for each value for the amount of
simulator memory m (different line shapes), the charts plot
the average value of the following quantity: sim_time(χn,k,m∗)

sim_time(χn,k,m) ,
which measures, in terms of simulation time (sim_time), the
efficiency of the parallel simulation campaign χn,k,m (which
verifies n random traces in parallel on k processes assuming
that each simulator can keep only m states simultaneously
stored) with respect to the corresponding parallel simulation
campaign χn,k,m∗ (which verifies the same traces with the
same number of parallel processes, but assuming maximum
simulator memory, i.e., m = m∗).

The plots show how efficiency is very well preserved when
reducing the value for m to up to m∗ × 50%, unsurprisingly
degrading for lower values of m. We also point out that the
maximum memory required to each simulator (i.e., when
m = m∗) is always very limited, and easily met in practice.
Namely, since simulator states occupy at most a few dozens
of Kilobytes, the memory requirements are always less than
(upper limits reached for 1024 parallel processes/slices):
2GB for BDC (m∗ ≤ 15 681); 4GB for ALMA (m∗ ≤ 62 050);
8GB for FCS (m∗ ≤ 156 115).

6.4.4 Simulation speedups and time savings
The fourth column of Figures 1 to 3 shows the speedups
in simulation time achieved by our computed optimised
campaigns under different settings regarding the memory
available on each simulator.

Namely, for each SUV and each combination of values
for the number of traces n (row), the number of parallel
processes (slices) k, and for each value for the amount of
simulator memory m (different line shapes), the charts plot

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 10

the average value of the following quantity: sim_time(χn,k,1)
sim_time(χn,k,m) ,

which measures, in terms of simulation time (sim_time), the
speedup of each parallel simulation campaign χn,k,m (which
verifies n random traces in parallel on k processes assuming
that each simulator can keep only m states simultaneously
stored) with respect to the corresponding campaign χn,k,1

(which verifies the same traces with the same number of
parallel processes, but assuming that each simulator can
keep simultaneously stored only one state, that is no optimi-
sation at all). The plots show how our simulation campaign
optimiser always achieves very significant speedups, up to
more than 8×.

The fifth column of Figures 1 to 3 shows how these
speedups translate in huge reductions in simulation time (in
days). Namely, for each SUV and each combination of
values for n, k, and m, the charts plot the average value
of the overall simulation time of the parallel simulation
campaigns χn,k,m, which verify the given SUV on n random
traces under simulator memory setting m. The plots clearly
show that our simulation campaign optimiser makes practically
viable (in some days or at most weeks of parallel simulation)
verification tasks that would take an inconceivable long time
without optimisation (i.e., when m = 1).

6.5 Limitations
Our optimised campaigns heavily rely on storing and load-
ing back intermediate simulator states to avoid simulating
common prefixes of different traces multiple times. Hence,
for SUV models exhibiting very large states (e.g., those
defined via partial differential equations, transport delays,
or variable delay blocks), the time to execute STORE and
LOAD commands may become substantial, and this raises a
question on whether it would be faster to skip optimisation
altogether and just run the non-optimised campaigns. Here
we briefly discuss this issue.

In the case of SUV models showing larger states than
ours, but which are also proportionally slower to advance,
the speedups enabled by the campaign optimisation would
be somewhat preserved. Thus, the problematic situations
for our optimiser occur when dealing with SUV models
whose states are larger, but whose simulation is only sub-
proportionally slower to advance.

To assess to what extent our optimised campaigns still
grant time savings with respect to the non-optimised cam-
paigns, we reconsidered our experiments by artificially in-
flating the duration of STORE and LOAD commands by a
factor f ranging from 1 to 100, keeping unchanged the
duration of RUN commands. Thus, we placed ourselves in
the most hostile setting, i.e., the verification of variations of
our SUV models that, although requiring the same time to
be advanced, have larger states which need f times the time
need by our original SUV models to be stored and loaded
back.

Unsurprisingly, the speedups achieved by optimised
campaigns gradually decrease when f increases, but still
typically grant substantial savings in simulation time. For ex-
ample, the speedups achieved for our case studies (100%
traces) fall to: 2.2–2.4× (BDC), 4.3–6.0× (ALMA), 3.7–5.5×
(FCS) for f = 10; 1.0–1.3× (BDC), 2.5–3.2× (ALMA), 2.5–
3.1× (FCS) for f = 50; 0.9–1.0× (BDC), 1.6–2.4× (ALMA),
1.7–2.3× (FCS) for f = 100.

7 RELATED WORK

Black-box simulation-based SLV of cyber-physical systems
has been widely addressed in the literature. For exam-
ple, simulation-based reachability analysis for large linear
continuous-time dynamical systems has been investigated
in [6], [14]. A simulation-based data-driven approach to
verification of hybrid control systems described by a com-
bination of a black-box simulator for trajectories and a
white-box transition graph specifying mode switches has
been investigated in [17]. Formal verification of discrete
time Simulink models (e.g., Stateflow or models restricted
to discrete time operators) with small domain variables
has been investigated in, e.g., [9], [41], [49], [52]. However,
none of the approaches above supports simulation-based
bounded model checking of arbitrary simulation models
on a (typically extremely large) set of operational scenarios
given as input, and none of them addresses the issue of
simulation campaign optimisation.

To the best of our knowledge, the only available litera-
ture which deals with simulation campaign optimisation is
our previous works [28], [30], where preliminary versions
of our algorithm have been presented. With respect to those
conference papers, the current article presents a new, more
scalable algorithm which guarantees to compute a shortest
simulation campaign when enough simulator memory is
allowed, and exploits various heuristics to compute an as
short campaign as possible even when such memory re-
quirements are not met. Our algorithm computes simulation
campaigns that obey to the verification order decided by
the user, possibly randomised so as to compute, at any
time during simulation, an upper bound to the omission
probability, using the results of [32].

Our algorithm takes as input a set of operational sce-
narios that can be provided in several ways, e.g., from a
high-level constraint-based model as discussed in [38], or
as a mass-memory database of scenarios. This allows us to
seamlessly support both (random) exhaustive verification
(when the given scenarios completely define the set of
operational scenarios of interest for the verification task)
and statistical model checking (when the given scenarios
are a random sample of such scenarios).

When exhaustive verification is not a viable option,
given the huge number of scenarios of interest, simulation-
based statistical model checking is often preferred, in order
to compute statistically-sound information about the SUV
properties of interest from a random sample of the possible
scenarios, see, e.g., [7], [8], [10], [18], [19], [20], [23], [23], [24],
[53], [54]. Simulation-based statistical model checking has
been successfully applied in several domains, e.g., Simulink
CPS models [12], [55], mixed-analog circuits [11]; smart grid
control policies [21], [35], [36], [37]; biological models [39],
[42], [46], [50]. Finally, simulation-based falsification of CPS
properties (e.g., for Simulink models) has been extensively
investigated. Examples are in [1], [2], [5], [13], [15], [22], [44],
[51] and citations thereof. Some of such works also propose
suitable data-structures (e.g., tree-like) to represent the set of
possible traces, as we do.

Our simulation campaign optimisation algorithm is in-
dependent of the chosen verification technique, and the com-
puted campaigns would bring significant speedups in terms

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 11

11
11
15

49
50

10
16
20
16
17

5
4
4
5
6

2
2
1
1
1

optimisation [seconds]

25
%
tr
ac
es

(1
2 
49
2 
77
8)

100%100%100%100%100%

100%97%
98%98%
97%

100%92%
94%95%
95%

100%85%
91%92%
92%

efficiency wrt.
parallelism [%]

23%

73%
86%
95%
100%

25%

73%
86%
95%
100%

25%
70%
85%
95%
100%

26%
67%
85%
94%
100%

efficiency wrt.
sim. memory [%]

1.0×

3.1×
3.7×
4.1×
4.3×

1.0×

2.9×
3.5×
3.8×
4.0×

1.0×

2.8×
3.3×
3.7×
3.9×

1.0×

2.6×
3.3×
3.7×
3.9×

speedup wrt.
sim. memory [×]

6 487
2 067
1 745
1 583
1 503

1 550
531
447
405
386

387
140
115
103
98

98
37
29
26
25

simulation time [days]

21
27
42
68

191

33
29
32
39
52

10
9
12
9
13

3
2
2
2
3

50
%
tr
ac
es

(2
4 
98
5 
55
5)

100%100%100%100%100%

100%99%
98%98%
98%

100%95%
95%96%
96%

100%92%
93%94%
94%

19%
69%
84%
94%
100%

21%
70%
85%
95%
100%

21%
68%
84%
94%
100%

21%
68%
84%
94%
100%

1.0×

3.6×
4.3×
4.8×
5.1×

1.0×

3.4×
4.1×
4.5×
4.8×

1.0×

3.3×
4.0×
4.5×
4.8×

1.0×

3.3×
4.0×
4.5×
4.8×

12 997
3 643
2 998
2 684
2 531

3 099
924
762
683
646

792
240
196
174
164

202
61
50
44
42

32
46
73
120

252

39
49
55
76
74

21
16
15
17
17

6
4
3
3
3

75
%
tr
ac
es

(3
7 
47
8 
33
2)

100%100%100%100%100%

100%99%
99%99%
99%

100%96%
97%98%
98%

96%94%
94%96%
95%

18%

67%
83%
93%
100%

19%
67%
83%
93%
100%

18%
65%
81%
93%
100%

18%

66%
82%
94%
100%

1.0×

3.8×
4.7×
5.3×
5.7×

1.0×

3.6×
4.4×
5.0×
5.4×

1.0×

3.6×
4.5×
5.1×
5.5×

1.0×

3.7×
4.6×
5.3×
5.6×

19 500
5 128
4 144
3 669
3 423

4 649
1 291
1 047
925
864

1 202
333
267
233
217

317
85
68
59
56

1 4 16 64
41
65
104

225

302

14
13
17
21
23

3
2
2
2
3

0
0
0
0
0

10
0%

tr
ac
es

(4
9 
97
1 
10
9)

slices [×1024]

1 4 16 64

100%100%100%100%100%

100%99%
98%98%
98%

99%97%
98%98%
98%

98%91%
94%96%
95%

slices [×1024]

1 4 16 64
17%

64%
80%
92%
100%

17%

64%
80%
92%
100%

17%

63%
79%
91%
100%

17%

61%
79%
92%
100%

slices [×1024]

1 4 16 64
1.0×

3.8×
4.8×
5.5×
6.0×

1.0×

3.7×
4.7×
5.4×
5.9×

1.0×

3.7×
4.7×
5.4×
5.9×

1.0×

3.5×
4.6×
5.4×
5.8×

slices [×1024]

1 4 16 64

25 001
6 536
5 211
4 536
4 153

6 199
1 658
1 323
1 151
1 055

1 572
421
333
290
264

397
112
86
74
68

slices [×1024]

m = 1 m = 25% m* m = 50% m* m = 75% m* m = m*

Figure 1: Experimental results: Buck DC-DC Converter (BDC).

43
89
198
321

520

28
20
53
70
75

21
17
18
19
21

8
8
6
9
8

optimisation [seconds]

25
%
tr
ac
es

(2
6 
88
3 
80
3)

100%100%100%100%100%

100%99%
99%99%
99%

97%98%
99%98%
97%

98%95%
97%94%
93%

efficiency wrt.
parallelism [%]

17%

65%
80%
92%
100%

19%
65%
81%
92%
100%

17%

66%
82%
93%
100%

18%
67%
83%
93%
100%

efficiency wrt.
sim. memory [%]

1.0×

3.7×
4.6×
5.3×
5.7×

1.0×

3.4×
4.2×
4.8×
5.2×

1.0×

3.8×
4.7×
5.3×
5.8×

1.0×

3.6×
4.6×
5.1×
5.5×

speedup wrt.
sim. memory [×]

8 637
2 313
1 874
1 642
1 508

1 997
584
472
414
380

558
147
118
104
96

138
38
30
27
25

simulation time [days]

86
244
721
1 307

1 995

48
115
134
183
222

35
34
41
41
51

10
10
10
10
11

50
%
tr
ac
es

(5
3 
76
7 
60
5)

100%100%100%100%100%

99%100%
100%99%
99%

89%98%
99%98%
98%

95%98%
96%95%
95%

14%

62%
79%
92%
100%

14%

63%
79%
92%
100%

13%

62%
79%
92%
100%

14%

64%
80%
92%
100%

1.0×

4.3×
5.5×
6.4×
6.9×

1.0×

4.4×
5.5×
6.4×
7.0×

1.0×

4.8×
6.1×
7.1×
7.7×

1.0×

4.5×
5.6×
6.4×
7.0×

17 135
3 969
3 130
2 680
2 466

4 347
992
785
675
621

1 208
253
198
170
157

282
63
50
44
40

131
513
1 260
2 787

4 267

45
66
105
110
261

16
13
25
33
21

18
6
17
19
7

75
%
tr
ac
es

(8
0 
65
1 
40
7)

100%100%100%100%100%

100%100%100%100%100%

96%99%
99%98%
98%

97%96%
96%96%
96%

13%

61%
79%
93%
100%

14%

61%
80%
93%
100%

13%

62%
80%
94%
100%

13%

61%
80%
93%
100%

1.0×

4.8×
6.2×
7.2×
7.8×

1.0×

4.5×
5.9×
6.9×
7.3×

1.0×

4.9×
6.4×
7.4×
7.9×

1.0×

4.7×
6.1×
7.1×
7.7×

25 655
5 399
4 153
3 549
3 297

6 072
1 349
1 034
886
826

1 677
340
263
225
211

413
88
67
57
53

1 4 16 64
170
1 000
2 728

5 209

7 395

63
108
180
300
447

15
14
18
24
31

3
2
3
3
3

10
0%

tr
ac
es

(1
07
 5
35
 2
09
)

slices [×1024]

1 4 16 64

100%100%100%100%100%

97%99%
99%100%
99%

94%99%
98%98%
98%

100%97%
97%97%
96%

slices [×1024]

1 4 16 64
12%

62%
81%
94%
100%

12%

62%
81%
94%
100%

12%

62%
82%
94%
100%

13%

62%
82%
95%
100%

slices [×1024]

1 4 16 64
1.0×

5.2×
6.8×
7.9×
8.4×

1.0×

5.3×
6.9×
8.1×
8.5×

1.0×

5.4×
7.1×
8.2×
8.7×

1.0×

4.9×
6.5×
7.5×
7.9×

slices [×1024]

1 4 16 64

34 043
6 601
5 001
4 320
4 061

8 741
1 662
1 258
1 082
1 022

2 255
417
317
276
260

522
106
80
69
66

slices [×1024]

m = 1 m = 25% m* m = 50% m* m = 75% m* m = m*

Figure 2: Experimental results: Apollo Lunar Model Autopilot (ALMA).

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 12

68
257
522

932

1 374

16
23
35
53
78

16
9
27
17
21

8
8
7
11
7

optimisation [seconds]

25
%
tr
ac
es

(4
8 
96
7 
41
8)

100%100%100%100%100%

100%99%
99%99%
99%

100%97%
98%98%
98%

100%95%
95%96%
96%

efficiency wrt.
parallelism [%]

20%
70%
83%
93%
100%

22%
70%
84%
94%
100%

21%
69%
83%
94%
100%

22%
69%
83%
94%
100%

efficiency wrt.
sim. memory [%]

1.0×

3.5×
4.2×
4.7×
5.0×

1.0×

3.1×
3.7×
4.2×
4.5×

1.0×

3.3×
4.0×
4.5×
4.8×

1.0×

3.1×
3.7×
4.2×
4.5×

speedup wrt.
sim. memory [×]

12 117
3 488
2 911
2 600
2 429

2 743
882
733
656
614

739
224
186
165
155

177
57
47
42
39

simulation time [days]

141
1 463
3 210

5 198

7 053

32
73
138
242
376

8
8
11
15
18

1
1
2
2
2

50
%
tr
ac
es

(9
7 
93
4 
83
6)

100%100%100%100%100%

100%99%
99%99%
99%

100%99%
98%98%
98%

100%95%
94%96%
96%

17%

67%
82%
93%
100%

19%
67%
82%
93%
100%

17%

67%
82%
93%
100%

18%
66%
80%
93%
100%

1.0×

3.9×
4.8×
5.5×
5.9×

1.0×

3.6×
4.4×
5.0×
5.4×

1.0×

3.8×
4.7×
5.3×
5.8×

1.0×

3.6×
4.3×
5.0×
5.4×

24 166
6 141
5 009
4 420
4 091

5 525
1 543
1 262
1 115
1 032

1 498
389
317
281
260

361
101
83
72
66

211
3 621
7 504

12 143

16 110

49
159
391
675
888

12
14
21
31
42

3
2
4
5
3

75
%
tr
ac
es

(1
46
 9
02
 2
54
)

100%100%100%100%100%

100%99%
99%99%
99%

96%98%
98%98%
98%

100%96%
96%96%
97%

15%

65%
81%
92%
100%

17%

65%
81%
92%
100%

15%

65%
81%
92%
100%

16%

64%
80%
92%
100%

1.0×

4.3×
5.4×
6.1×
6.6×

1.0×

3.9×
4.9×
5.6×
6.0×

1.0×

4.4×
5.5×
6.3×
6.8×

1.0×

3.9×
4.9×
5.6×
6.1×

36 273
8 399
6 747
5 921
5 461

8 319
2 112
1 700
1 490
1 378

2 363
537
429
375
347

536
137
109
95
87

1 4 16 64
476
10 968

21 752
33 676

42 998

107
526
1 218
1 861
2 436

23
40
65
95
121

5
5
6
8
9

10
0%

tr
ac
es

(1
95
 8
69
 6
71
)

slices [×1024]

1 4 16 64

100%100%100%100%100%

100%99%
99%99%
99%

94%98%
99%98%
98%

100%96%
98%97%
98%

slices [×1024]

1 4 16 64
14%

66%
84%
96%
100%

16%

66%
84%
96%
100%

14%

66%
84%
96%
100%

16%

65%
84%
95%
100%

slices [×1024]

1 4 16 64
1.0×

4.6×
5.8×
6.7×
6.9×

1.0×

4.2×
5.3×
6.1×
6.3×

1.0×

4.8×
6.1×
7.0×
7.3×

1.0×

4.1×
5.2×
6.0×
6.3×

slices [×1024]

1 4 16 64

48 196
10 452
8 289
7 242
6 937

11 103
2 639
2 095
1 830
1 750

3 201
663
525
460
441

695
170
132
116
110

slices [×1024]

m = 1 m = 25% m* m = 50% m* m = 75% m* m = m*

Figure 3: Experimental results: Fuel Control System (FCS).

of simulation time to all of them. For example, the first row
of Figures 1 to 3 shows that speedups up to around 6× in
simulation time can be achieved even when a small random
sample (only 25%) of the entire sets of scenarios is chosen to
perform statistical model checking.

The ability to perform parallel verification of the SUV
is also a key enabler to make simulation-based SLV of
industry-scale CPSs practically viable. Parallel approaches
have been investigated, see e.g., [4] in the context of proba-
bilistic properties. Our approach seamlessly allows massive
embarrassingly parallel verification. This is because, once the
input set of scenarios has been split into slices, a parallel
simulation campaign is computed, which is used to feed
independent verification processes to be run in parallel.

8 CONCLUSIONS

In this article we focused on the generation of optimised sim-
ulation campaigns to carry out SLV of CPSs using arbitrarily
many simulators of the system model running in parallel in
a large HPC infrastructure, with the goal of minimising the
overall completion time.

By taking as input a user-defined collection of (a random
sample of) operational scenarios of interest from either a
mass-storage database or a symbolic structure such as a
constraint-based scenario generator in a (possibly random)
user-defined order, our optimiser computes shortest parallel
campaigns which exercise the system model on all (and
only) the given scenarios. Our campaigns greatly speed-up
verification by wisely avoiding the repeated computation of
recurrent system trajectories as much as possible, compati-
bly with simulator memory constraints.

Our experiments on SLV of Modelica/FMU and
Simulink case study models with up to almost 200 million
scenarios show that our optimisation yields speedups as high
as 8× and scales very well to large HPC infrastructures
(efficiency almost always ≥ 90% even when using 65 536
computational nodes, i.e., 1024 64-core parallel machines).

The conjoint exploitation of simulation campaign opti-
misation and massive parallelism makes practically viable
(a few weeks in a HPC infrastructure) verification tasks
(both exhaustive and statistical) which would otherwise
take inconceivably long time.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for
their comments and suggestions.

This work was partially supported by: Italian Min-
istry of University and Research under grant “Di-
partimenti di eccellenza 2018–2022” of the Depart-
ment of Computer Science of Sapienza University of
Rome; EC FP7 project PAEON (Model Driven Compu-
tation of Treatments for Infertility Related Endocrino-
logical Diseases, 600773); EC FP7 project SmartHG (En-
ergy Demand Aware Open Services for Smart Grid In-
telligent Automation, 317761); INdAM “GNCS Project
2022”; Sapienza University projects RG12117A8B393BDC,
RG11916B892E54DB, RG120172B9329D33; Lazio POR FESR
projects E84G20000150006, F83G17000830007; NRRP Mis-
sion 4, Comp. 2, Inv. 1.5, NextGenEU, MUR CUP
B83C22002820006, Rome Technopole.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 13

REFERENCES

[1] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and
A. Gupta. Probabilistic temporal logic falsification of cyber-
physical systems. ACM TECS, 12(2s), 2013.

[2] A. Adimoolam, T. Dang, A. Donzé, J. Kapinski, and X. Jin. Clas-
sification and coverage-based falsification for embedded control
systems. In CAV 2017, volume 10426 of LNCS. Springer, 2017.

[3] G. Agha and K. Palmskog. A survey of statistical model checking.
ACM Trans. Model. Comput. Simul., 28(1), 2018.

[4] M. AlTurki and J. Meseguer. PVeStA: A parallel statistical model
checking and quantitative analysis tool. In CALCO 2011, volume
6859 of LNCS. Springer, 2011.

[5] Y.S.R. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankara-
narayanan. S-TaLiRo: A tool for temporal logic falsification for
hybrid systems. In TACAS 2011, volume 6605 of LNCS. Springer,
2011.

[6] S. Bak and P.S. Duggirala. Simulation-equivalent reachability of
large linear systems with inputs. In CAV 2017, volume 10426 of
LNCS. Springer, 2017.

[7] A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye, and
A. Legay. Statistical abstraction and model-checking of large het-
erogeneous systems. In Formal Techniques for Distributed Systems.
Springer, 2010.

[8] J. Bogdoll, L.M.F. Fioriti, A. Hartmanns, and H. Hermanns. Partial
order methods for statistical model checking and simulation. In
Formal Techniques for Distributed Systems. Springer, 2011.

[9] P. Boström and J. Wiik. Contract-based verification of discrete-time
multi-rate Simulink models. SoSyM, 15(4), 2016.

[10] B. Boyer, K. Corre, A. Legay, and S. Sedwards. PLASMA-lab:
A flexible, distributable statistical model checking library. In
QEST 2013. Springer, 2013.

[11] E.M. Clarke, A. Donzé, and A. Legay. On simulation-based
probabilistic model checking of mixed-analog circuits. Form. Meth.
Sys. Des., 36(2), 2010.

[12] E.M. Clarke and P. Zuliani. Statistical model checking for cyber-
physical systems. In ATVA 2011, volume 11. Springer, 2011.

[13] J. Deshmukh, X. Jin, J. Kapinski, and O. Maler. Stochastic local
search for falsification of hybrid systems. In ATVA 2015. Springer,
2015.

[14] A. Donzé. Breach, a toolbox for verification and parameter syn-
thesis of hybrid systems. In CAV 2010, volume 6174 of LNCS.
Springer, 2010.

[15] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J.V.
Deshmukh. Efficient guiding strategies for testing of temporal
properties of hybrid systems. In NFM 2015. Springer, 2015.

[16] G.E. Fainekos and G.J. Pappas. Robustness of temporal logic
specifications for continuous-time signals. TCS, 410(42), 2009.

[17] C. Fan, B. Qi, S. Mitra, and M. Viswanathan. DryVR: Data-driven
verification and compositional reasoning for automotive systems.
In CAV 2017, volume 10426 of LNCS. Springer, 2017.

[18] T. Gonschorek, B. Rabeler, F. Ortmeier, and D. Schomburg. On
improving rare event simulation for probabilistic safety analysis.
In MEMOCODE 2017. ACM, 2017.

[19] R. Grosu and S.A. Smolka. Quantitative model checking. In
ISoLA 2004, 2004.

[20] R. Grosu and S.A. Smolka. Monte Carlo model checking. In
TACAS 2005, volume 3440 of LNCS. Springer, 2005.

[21] B.P. Hayes, I. Melatti, T. Mancini, M. Prodanovic, and E. Tronci.
Residential demand management using individualised demand
aware price policies. IEEE Trans. Smart Grid, 8(3), 2017.

[22] B. Hoxha, A. Dokhanchi, and G. Fainekos. Mining parametric tem-
poral logic properties in model based design for cyber-physical
systems. STTT, 2017.

[23] C. Jegourel, A. Legay, and S. Sedwards. A platform for high
performance statistical model checking–plasma. In TACAS 2012,
volume 7214 of LNCS. Springer, 2012.

[24] C. Jegourel, A. Legay, and S. Sedwards. Importance splitting for
statistical model checking rare properties. In CAV 2013, volume
8044 of LNCS. Springer, 2013.

[25] Y.J. Kim, O. Choi, M. Kim, J. Baik, and T.-H. Kim. Validating
software reliability early through statistical model checking. IEEE
Softw., 30(3), 2013.

[26] Y.J. Kim and M. Kim. Hybrid statistical model checking technique
for reliable safety critical systems. In ISSRE 2012. IEEE, 2012.

[27] O. Maler and D. Nickovic. Monitoring temporal properties of
continuous signals. In FORMATS/FTRTFT 2004, volume 3253 of
LNCS. Springer, 2004.

[28] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci.
System level formal verification via model checking driven simu-
lation. In CAV 2013, volume 8044 of LNCS. Springer, 2013.

[29] T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, and E. Tronci.
On minimising the maximum expected verification time. Inf. Proc.
Lett., 122, 2017.

[30] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. Anytime
system level verification via random exhaustive hardware in the
loop simulation. In DSD 2014. IEEE, 2014.

[31] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. Simulator
semantics for system level formal verification. EPTCS, 193, 2015.

[32] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. Anytime
system level verification via parallel random exhaustive hardware
in the loop simulation. Microprocessors and Microsystems, 41, 2016.

[33] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. SyLVaaS:
System level formal verification as a service. Fundam. Inform.,
149(1–2), 2016.

[34] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. On
checking equivalence of simulation scripts. J. Log. Algebr. Meth.
Program., 120, 2021.

[35] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber,
B. Hayes, M. Prodanovic, and L. Elmegaard. Demand-aware
price policy synthesis and verification services for smart grids.
In SmartGridComm 2014. IEEE, 2014.

[36] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J.K. Gruber,
B. Hayes, and L. Elmegaard. Parallel statistical model checking for
safety verification in smart grids. In SmartGridComm 2018. IEEE,
2018.

[37] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J.K. Gruber,
B. Hayes, M. Prodanovic, and L. Elmegaard. User flexibility aware
price policy synthesis for smart grids. In DSD 2015. IEEE, 2015.

[38] T. Mancini, I. Melatti, and E. Tronci. Any-horizon uniform
random sampling and enumeration of constrained scenarios for
simulation-based formal verification. IEEE TSE, 2021.

[39] T. Mancini, E. Tronci, I. Salvo, F. Mari, A. Massini, and I. Melatti.
Computing biological model parameters by parallel statistical
model checking. In IWBBIO 2015, volume 9044 of LNCS. Springer,
2015.

[40] F. Mari, I. Melatti, I. Salvo, and E. Tronci. Model based synthesis
of control software from system level formal specifications. ACM
TOSEM, 23(1), 2014.

[41] B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for translating
Simulink models into input language of a model checker. In
ICFEM 2006. Springer, 2006.

[42] N. Miskov-Zivanov, P. Zuliani, E.M. Clarke, and J.R. Faeder.
Studies of biological networks with statistical model checking:
Application to immune system cells. In ACM-BCB 2013. ACM,
2013.

[43] A Rajhans, A. Mavrommati, P.J. Mosterman, and R.G. Valenti.
Specification and runtime verification of temporal assessments in
simulink. In RV 2021. Springer, 2021.

[44] S. Sankaranarayanan, S.A. Kumar, F. Cameron, B.W. Bequette,
G. Fainekos, and D.M. Maahs. Model-based falsification of an
artificial pancreas control system. ACM SIGBED Review, 14(2),
2017.

[45] S. Sinisi, V. Alimguzhin, T. Mancini, and E. Tronci. Reconciling
interoperability with efficient verification and validation within
open source simulation environments. Simul. Model. Pract. Theory,
109, 2021.

[46] S. Sinisi, V. Alimguzhin, T. Mancini, E. Tronci, and B. Leeners.
Complete populations of virtual patients for in silico clinical trials.
Bioinformatics, 36(22–23), 2020.

[47] W.-C. So, C.K. Tse, and Y.-S. Lee. Development of a fuzzy logic
controller for DC/DC converters: Design, computer simulation,
and experimental evaluation. IEEE Trans. Pow. Electr., 11(1), 1996.

[48] E.D. Sontag. Mathematical Control Theory: Deterministic Finite Di-
mensional Systems (2nd Ed.). Springer, 1998.

[49] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-
time Simulink to Lustre. ACM TECS, 4(4), 2005.

[50] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti,
A. Massini, F. Davi’, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners,
T.H.C. Krüger, M. Egli, and F. Ille. Patient-specific models from
inter-patient biological models and clinical records. In FMCAD
2014. IEEE, 2014.

[51] C.E. Tuncali and G. Fainekos. Rapidly-exploring random trees for
testing automated vehicles. In ITSC 2019. IEEE, 2019.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 14

[52] M.W. Whalen, D.D. Cofer, S.P. Miller, B.H. Krogh, and W. Storm.
Integration of formal analysis into a model-based software devel-
opment process. In FMICS 2007, volume 4916 of LNCS. Springer,
2007.

[53] H.L.S. Younes, M.Z. Kwiatkowska, G. Norman, and D. Parker.
Numerical vs. statistical probabilistic model checking. STTT, 8(3),
2006.

[54] H.L.S. Younes and R.G. Simmons. Probabilistic verification of
discrete event systems using acceptance sampling. In CAV 2002,
volume 2404 of LNCS. Springer, 2002.

[55] P. Zuliani, A. Platzer, and E.M. Clarke. Bayesian statistical
model checking with application to Stateflow/Simulink verifica-
tion. Form. Meth. Sys. Des., 43(2), 2013.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 15

This article appears in IEEE Transactions on Software
Engineering, 2023. DOI: 10.1109/TSE.2023.3298432

APPENDIX A
FORMAL FRAMEWORK

A.1 Modelling the System Under Verification

Our SUV is a continuous- or discrete-time Dynamical Sys-
tem whose inputs are operational scenarios defined in terms
of time functions (Definition 6) of values in the SUV input
space, defining possible values for the user inputs and other
uncontrollable events, e.g., faults in sensors and actuators or
changes in system parameters.

Definition 6 (Time set, time function). A time set T is R0+

(for continuous-time systems) or N (for discrete-time systems) or
an interval thereof. Given a time set T and a set of values U, a
time function on T with values in U is a function u : T → U
which associates to each time point t ∈ T a value u(t) ∈ U.

Given a time set T and a set of values U, we denote by UT the
set of time functions on T with values in U. When T is the empty
interval ∅, we conventionally assume that U∅ consists of a single
time function u∅ (the empty time function, having duration zero).

In the following, we sometimes find convenient to de-
note the empty time interval ∅ by [t, t), where t is any value
in T. Definition 7 defines two operations on time functions
we use in the following.

Definition 7 (Restriction and concatenation of time func-
tions). Given a time function u ∈ UT and a time set T1 ⊆ T, the
restriction of u to T1 is function u|T1

∈ UT1 defined in T1 and
such that u|T1

(t) = u(t) for all t ∈ T1.
Given two time sets T1 and T2 such T1 ∩ T2 = ∅ and T1 ∪

T2 is a time set (i.e., R0+, N, or an interval thereof), and time
functions u1 ∈ UT1 and u2 ∈ UT2 , the concatenation of u1 and
u2 is function u1 · u2 in UT1∪T2 such that, for all t ∈ T1 ∪ T2:
u1 · u2(t) = u1(t) if t ∈ T1 and u2(t) otherwise.

Definition 8 recalls the notion of deterministic, causal
Dynamical System from [5] (see also [1], [2]), which take as
input time functions with values in its input space and output
time functions with values in its output space.

Definition 8 (Dynamical System). A deterministic, causal
Dynamical System (DS) H is a tuple (T,X, x0,U,Y, φ, ψ),
where:

• T is the time set;
• X, the state space of H, is a non-empty set whose elements

denote states;
• x0 ∈ X is the initial state of H;
• U, the input space ofH, is the set of its possible input values;
• Y, the output space ofH, is the non-empty set of its possible

output values;
• φ is the transition map of H. Given t1, t2 ∈ T such that
t1 ≤ t2, x ∈ X, u ∈ UT, φ(t2, t1, x,u) denotes the state
reached by H at time t2 when starting from state x at time
t1 and given input time function u.
Function φ must satisfy the following properties:
– Causality: for all t1, t2, t3 ∈ T such that t1 ≤ t2 ≤ t3,

u ∈ UT, and x ∈ X, φ(t2, t1, x,u) = φ(t2, t1, x,u|[t1,t2)).

– Consistency: for all t ∈ T, u ∈ UT, and x ∈ X,
φ(t, t, x,u) = x.

– Semigroup: for all t1, t2, t3 ∈ T such that t1 ≤ t2 ≤
t3, u1,2 ∈ U[t1,t2), u2,3 ∈ U[t2,t3), and x ∈ X,
φ(t3, t2, φ(t2, t1, x,u1,2),u2,3) = φ(t3, t1, x,u1,2 · u2,3).

• ψ : X→ Y is the observation function of H.
A DS is time invariant if its time set T is right-unbounded

and, for any t1, t2, τ ∈ T such that t1 ≤ t2, x ∈ X, and for
any input time function u ∈ U[t1,t2), we have: φ(t1, t2, x,u) =
φ(t1 + τ, t2 + τ, x,u′), where u′ ∈ U[t1+τ,t2+τ) is such that
u′(t) = u(t− τ) for all t ∈ [t1 + τ, t2 + τ).

In the following, we assume that our SUV is a discrete-
or continuous-time input-state-output deterministic, causal,
time-invariant DS, whose state can undertake continuous as
well as discrete changes, and whose output ranges on any
combination of discrete and continuous values.

A.2 System-Level Verification
Given a SUV H and a set of time functions U on its input
space (defining operational scenarios), verifying H on U
means to collect the outputs of the SUV monitor at the end
of each scenario in U (Definition 9).

Definition 9 (SLV). A SLV problem is a pair π = (H,U), where
H is a SUV (with an embedded monitor) having input space U,
and U is a set of input time functions in UT.

The answer to π is the collection of the outputs of the
SUV monitor produced at the end of each u ∈ U , where
u is injected in H starting from its initial state. That is:{
ψ(φ(t, 0, x0,u)) | u ∈ U ,u ∈ U[0,t)

}
.

A.3 Modelling the SUV operational environment
Given our focus on verification tasks where numerical sim-
ulation is the only means to get the trajectory of the SUV
when fed with an input scenario, we will assume that the
set U is finite and finitely representable, and that each scenario
is time-bounded. Hence, in the following, we assume that the
set of values taken by input scenarios in U (actually, for
simplicity, the set U itself) is finite (and, without loss of gen-
erality, ordered) and scenarios in U are defined via piecewise
constant input time functions having discontinuities at time
points multiple of a given (arbitrarily small) time quantum
τ ∈ T \ {0}. Such scenarios can be conveniently represented
as input traces (Definition 1).

Definition 1 (Input trace). Let U be a finite set of values (the
SUV input space) and τ ∈ T \ {0} be a time quantum.

An input trace u with values in U is a finite sequence
(u0, . . . , uh−1) where all, for each i ∈ [0, h− 1], ui belongs to
U. Value h ∈ N+ is the trace horizon.

An input trace u = (u0, . . . , uh−1) is interpreted as
the bounded-horizon piecewise constant time function u ∈
U[0,τh) defined as u(t) = u⌊ t

τ ⌋
for t ∈ [0, τh). Thus, in the

following, we will assume that a time quantum τ ∈ T \ {0}
is given, and interchangeably refer to input traces and to
their uniquely associated piecewise constant time functions.
We recall (see the main article) that smooth continuous-
time functions can be managed as long as they can be
cast into (or suitably approximated by) finitely parametrisable

http://doi.org/10.1109/TSE.2023.3298432
http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 16

functions (e.g., via quantised values of a bounded number
of coefficients of their Fourier series), in which case the
input space actually defines such a (discrete or discretised)
parameter space.

APPENDIX B
SUV SIMULATORS

In this appendix, we formalise the notion of SUV simulator
(Definition 10, which extends the definition of [2], [3]). This
notion offers a general mathematical framework that will
allow us to link inputs to a SUVH (piecewise-constant input
time functions representing SUV scenarios and encoded
as input traces) to inputs for a simulator of H (simulation
campaigns, Definition 12).

Definition 10 (SUV simulator). Let Λ be a countable set of
identifiers (e.g., N). A SUV simulator S is a tuple (H,W) where
H = (T,X, x0,U,Y, φ, ψ) is a time-invariant DS (our SUV),
and W is a set whose elements denote simulator states. Each
simulator state w ∈ W has the form w = (x,u,M), where:

• x ∈ X defines a state of H or a distinguished state ⊥;
• u ∈ U[0,t) denotes an input time function over U defined

over a (possibly empty) bounded time set interval [0, t) (for
some t ∈ T);

• M is a finite map defining the content of the simulator
memory. Each element ofM is of the form: [λ 7→ (x′,u′)],
where λ ∈ Λ is an identifier (unique inM), x′ a SUV state,
and u′ ∈ U[0,t

′) (t′ ∈ T) is an input time function over a
bounded (possibly empty) interval of the time set T.

The simulator initial state is w0 = (x0,u∅, ∅), where u∅ ∈
U[0,0) is the empty input time function, having zero duration.

As an extension to [2], [3], each SUV state x ∈ X
occurring in a simulator state w = (x,u,M) ∈ W or in
the simulator memory M is always accompanied by the
input time function (piecewise constant in our setting) u
which would drive the SUV from its initial state x0 to x.
This is enforced by Definition 11, which gives the semantics
of simulator commands and of the simulator transition
function, and formally stated in Proposition 1.

Our extension eases the presentation of the forthcoming
results. The definitions is [2], [3] can be obtained back by
ignoring input time functions in simulator states and in the
simulator memory.

Definition 11 (Simulator commands and transition func-
tion). Let S = (H,W) be a simulator for SUV H = (T,X,
x0,U,Y, φ, ψ). The commands of S are: OUTPUT, LOAD(λ),
STORE(λ), FREE(λ), RUN(u, τ), where λ is an identifier, u ∈ U
is an input value for H, and τ ∈ T \ {0} is a non-zero time
duration (λ, u, and τ are command arguments).

The transition function of S, φS , defines how the internal sim-
ulator state changes upon execution of each command. Namely,
φS(w, CMD(args)) = w′ where S moves from state w to state w′

upon processing command CMD(args).
For each w = (x,u,M), let u ∈ U[0,t) for some t ∈ T.
Function φS is defined as follows:

• φS(w, OUTPUT) = w, as the OUTPUT command only reads
the output of S in the current state, which is the output of
SUV H (Definition 8) when in state x associated to w.

• φS(w, LOAD(λ)) = (x′,u′,M) if x ̸= ⊥ and [λ 7→ (x′,
u′)] ∈M.

• φS(w, STORE(λ)) = (x,u,M∪ {[λ 7→ (x,u)]}) if x ̸= ⊥
and ̸ ∃u′, x′ [λ 7→ (x′,u′)] ∈M.

• φS(w, FREE(λ)) = (x,u,M\{[λ 7→ (x,u)]}) if x ̸= ⊥ and
[λ 7→ (x,u)] ∈M.

• φS(w, RUN(û, τ)) = (φ(τ, x, û),u · û,M) if x ̸= ⊥; in
the formula, û is the input time function in U[t,t+τ) having
constant value û and u · û ∈ U[0,t+τ) is the concatenation of
u and û.

• φS(w, CMD(args)) = (⊥,u,M) in all the other cases.
The time advancement of command CMD(args) is the

time simulated by S when executing CMD(args). Namely:
time_adv(CMD(args)) = τ if CMD(args) = RUN(û, τ) and is
0 for all the other commands.

Given a sequence of scenarios (formally represented as
piecewise constant input time functions encoded as input
traces), we can build a sequence of commands (simulation
campaign, Definition 12) driving the simulator through those
scenarios. Conversely, given a simulation campaign, we
can compute the sequence of scenarios (piecewise constant
input time functions) simulated by it (Definition 2).

Definition 12 (Simulation campaign, state and output se-
quences). Let S = (H,W) be a simulator for SUVH and let φS
be the transition function for S.

• A simulation campaign χ for S is a sequence of simulator
commands χ = CMD0(args0) . . . CMDc−1(argsc−1) along
with their arguments, where c ∈ N.

• The length len(χ) of simulation campaign χ is the sum of
the time advancements of commands in χ. Namely: len(χ) =∑c−1

i=0 time_adv(CMDi(argsi)).
• To simulation campaign χ we can univocally associate the

sequence of simulator states w0, . . . , wc traversed by the
simulator while executing it, namely: w0 = (x0,u∅, ∅), i.e.,
the initial simulator state (Definition 10), and, for each i ∈
[1, c], wi = φS(wi−1, CMDi−1(argsi−1)).

• Simulation campaign χ is executable if and only if wc =
(xc,uc,Mc) is such that xc ̸= ⊥.

• The required simulator memory mem(χ) of simulation
campaign χ is the maximum number of entries in the simu-
lator memory among w0, . . . , wc (i.e., the states traversed
by χ, where wi = (xi,ui,Mi) for i ∈ [0, c]). Namely:
mem(χ) = maxci=0 |Mi|.

• The output sequence associated to executable simulation
campaign χ containing n ∈ N OUTPUT commands is
ψ(xj0), . . . , ψ(xjn−1), where, for each i ∈ [0, n − 1], ψ(xji)
is the output of SUV H (Definition 8) when in the state xji
associated to the simulator state (xji ,uji ,Mji) correspond-
ing to the i-th OUTPUT command.

Proposition 1 links inputs to a simulator S for H (i.e.,
simulation campaigns) to inputs for H (input time func-
tions): for each simulation campaign χ, the (piecewise con-
stant) input time function u of any simulator state (x,u,M)
traversed by S while executing χ drives H from its initial
state x0 to x.

Proposition 1. Let S = (H,W) be a simulator for H, χ =
CMD0(args0) . . . CMDc−1(argsc−1) an executable simulation
campaign for S , and w0, . . . , wc the sequence of simulator
states associated to χ.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 17

For each i ∈ [0, c], the input time function ui in wi = (xi,
ui,Mi) belongs to U[0,τi) (for some τi ∈ T) and is such that
φ(τi, 0, x0,ui) = xi.

Proof. LetH = (T,X, x0,U,Y, φ, ψ). For each i ∈ [0, c], let the
i-th state traversed by S during execution of χ be wi = (xi,
ui,Mi).

We prove that, for each i:
1) ui ∈ U[0,τi) for some τi ∈ R0+; and
2) φ(τi, 0, x0,ui) = xi.

The proof is by induction on i.
Base case (i = 0) By Definition 10, w0 = (x0,u∅, ∅), where

u∅ ∈ U[0,τ0) with τ0 = 0, i.e., u∅ is the input time func-
tion having zero duration. By Definition 8 (consistency),
φS(τ0, τ0, x0,u∅) = x0. The thesis follows.

Inductive case (i ∈ [1, c]) Assume, by inductive hypoth-
esis, that the (i − 1)-th state traversed by the simu-
lator when executing χ, wi−1 = (xi−1,ui−1,Mi−1) is
such that ui−1 ∈ U[0,τi−1) for some τi−1 ∈ R0+ and
φS(τi−1, 0, x0,ui−1) = xi−1. We now prove that ui ∈
U[0,τi) for some τi ∈ R0+ and that φS(τi, 0, x0,ui) = xi.
The proof is by cases, depending on the type of com-
mand CMDi(argsi) of χ, which moves S from state wi−1

to state wi = (xi,ui,Mi) (see the definition of φS in
Definition 11).
• If CMDi(argsi) = STORE(λ), FREE(λ) for some λ ∈ Λ

or OUTPUT, then the thesis trivially follows, as, from
executability of χ and the definition of φS , xi = xi−1

and ui = ui−1.
• If CMDi(argsi) = LOAD(λ) for some λ ∈ Λ, then

executability of χ and the definition of φS imply that
tuple [λ 7→ (xb,ub)] exists in Mi−1, with xb = xi
and ub = ui. The thesis follows from the inductive
hyphotesis.

• If CMDi(argsi) = RUN(u, τ) for some u ∈ U and τ ∈
R+, the definition of φS implies that ui = ui−1 · û, i.e.,
the concatenation of the input time function associ-
ated to simulator state wi−1, i.e., ui−1 ∈ U[0,τi−1), and
the input time function û ∈ U[τi−1,τi−1+τ) having con-
stant value û and defined in time set [τi−1, τi−1 + τ).
Thus, ui ∈ U[0,τi−1+τ) and from Definition 8 (semi-
group), the second point of the thesis follows from
the inductive hypothesis.

APPENDIX C
SIMULATION-BASED SLV
To perform simulation-based SLV of H over n input traces U
we need a simulator S = (H,W) for H and an executable
simulation campaign χ for S that somewhat drives S along
the n scenarios forH encoded by traces of U and collects the
simulator outputs at the end of each scenario.

To this end, Definition 2 allows us to associate to any ex-
ecutable simulation campaign χ for S the sequence U(χ) of
SUV scenarios (as piecewise constant input time functions)
for H actually explored by χ.

Definition 2 (Sequence of input time functions associated to
a simulation campaign). Let S = (H,W) be a simulator for

SUVH, φS the transition function of S, χ = CMD0(args0) . . .
CMDc−1(argsc−1) an executable simulation campaign for S
containing n ∈ N OUTPUT commands, and w0, . . . , wc the
sequence of simulator states associated to χ.

The sequence of input time functions associated to sim-
ulation campaign χ containing n OUTPUT commands is
U(χ) = uj0 , . . . ,ujn−1 , where, for all i ∈ [0, n − 1], uji is
the input time function associated to the state where the
simulator executes the i-th OUTPUT command of χ.

Definition 3 formalises the notion of a simulation cam-
paign aimed at computing the answer to a SLV problem.

Definition 3 (simulation campaign for an SLV problem). A
simulation campaign χ for SLV problem π = (H,U) is an
executable campaign for a simulator S of H, such that the
sequence U(χ) = uj0 , . . . ,ujn−1 of its associated input time
functions is a permutation of U .

C.1 Randomised simulation campaigns
Proposition 2 states that, if we put no limitation on the
required memory capacity, a shortest simulation campaign
exists for any ordering of the scenarios of the SLV problem
at hand.

Proposition 2. Let π = (H,U) be a SLV problem (|U| =
n) and S be a simulator for H. For any permutation
uj0 , . . . ,ujn−1 of input traces of U , there exists an executable
shortest simulation campaign χ for π on S, such that
U(χ) = uj0 , . . . ,ujn−1 .

Proof. Proof sketch. Arrange input traces of U (with time
quantum τ ∈ T \ {0}) as a rooted tree whose nodes are trace
prefixes (including the empty prefix, which is the root of the
tree) and whose edges connect nodes (u0 , . . . , ud

) (d ≥ 0)
with their parents (u0 , . . . , ud−1

) and are labelled with u
d

(when d = 0, (u0 , . . . , ud−1
) is conventionally assumed to

be the empty prefix). Every leaf node (or, equivalently, the
sequence of edge labels along the unique path from root to
it) is uniquely associated to a complete trace of U .

Clearly, a shortest simulation campaign for U must be
long at least τ l, where τ ∈ T is the time quantum associated
to traces in U and l is the number of edges of the tree.

A simulation campaign long exactly τ l can be easily
generated for any ordering uj0 , . . . ,ujn−1 of U , by consid-
ering paths of the tree connecting the root to the leaves
(corresponding to the traces) in the required order. The
campaign is very simple, given that for this proof we can
rely on unlimited simulator memory.

Namely, we want to traverse each edge of the tree from
its parent to its child node exactly once, with the aim to
reach all the leaves (representing all the traces in U) in the
required order. When traversing edge from (u0 , . . . , ud−1

)
(parent, d ≥ 0) to (u0 , . . . , ud

) (child node), we issue com-
mands: STORE(λ) (for a fresh identifier λ), RUN(u

d
, τ). When

reaching a leaf node, we issue command OUTPUT. If the
trace just considered is not the last one in the given order,
we start the new trace by issuing command LOAD(λ), where
λ is the deepest state of the tree already saved by a previous
STORE command along the root-to-leaf path identifying the
new trace, and continue from there.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 18

C.2 Parallel simulation campaigns

The answer to a SLV problem π = (H,U) (i.e., the collection
of the simulator outputs at the end of each scenario) can be
computed by arbitrarily partitioning U into k ∈ N+ subsets
(slices) U0, . . . ,Uk−1 (where k is the number of available com-
putational nodes), and by computing and taking the union
of the answers to the k smaller SLV problems πi = (H,Ui),
i ∈ [0, k − 1]. In our simulation-based setting, this can be
achieved using k simulators for H running as k independent
processes (e.g., in parallel in a HPC infrastructure) and
independently driven by k simulation campaigns χ1, . . . ,
χk, where, for all i, χi is a simulation campaign for πi.
Definition 5 formalises this concept.

Definition 5 (Parallel simulation campaign for a SLV prob-
lem). A k-parallel simulation campaign for SLV problem
π = (H,U) is a tuple Ξ = (χ0, . . . , χk−1) such that there
exists a partition of U into sets U0, . . . ,Uk−1 such that, for all
i, χi is a simulation campaign for πi = (H,Ui).

The length of χ is len(χ) = maxk−1
i=0 len(χi). Given m ∈

N+ ∪ {∞}, Ξ is a k-parallel m-memory simulation campaign if
all χis are m-memory simulation campaigns.

APPENDIX D
PARALLEL COMPUTATION OF PARALLEL SIMULA-
TION CAMPAIGNS

D.1 Computing a simulation campaign from each slice

D.1.1 Computing the Longest Shared Prefix Tree
In the following, given two input traces ua and ub, we
denote by ua ⊑ ub (respectively ua ⊏ ub) the fact that
ua (possibly the empty sequence) is a prefix (respectively,
a proper prefix) of ub. Also, by exploiting the fact that set
U is ordered, we denote by ua ≺ ub the fact that ua is
lexicographically less than ub.

Definition 13 defines the notions of Longest Shared Pre-
fix and that of Longest Shared Prefix Tree.

Definition 13 (Longest Shared Prefix, LSP; Longest Shared
Prefix Tree, LSPT). Let Ui be a finite collection of input traces
(e.g., a slice of U) with values in U.

A Longest Shared Prefix (LSP) for Ui is a (possibly empty)
sequence u of inputs (i.e., sequences of values of U) such that
there exist two traces ua and ub in Ui such that: u ⊑ ua, u ⊑ ub,
and there exists no u′ in Ui such that u ⊏ u′, u′ ⊑ ua, and
u′ ⊑ ub.

A Longest Shared Prefix Tree (LSPT) for Ui is a tree T =
(V, parent) such that:

1. Nodes (set V) denote distinct LSPs of Ui.
2. The parent node of u (if one exists) is parent(u) = up ∈ V

such that up ⊏ u and there exists no u′ ∈ V such that
up ⊏ u′ ⊏ u.

Condition 2. implies that a LSPT is a rooted tree.
The following functions are defined over nodes of T (set V):

a) Function depth : V → N associates to each node u =
(u0, . . . , ud−1) of T its length d, which represents the time
point dτ reached by the simulator (starting from its initial
state) after having injected input sequence u. The depth of
the node associated to the empty sequence is zero.

b) ntraces : V → N+, which associates to each node u the
number of traces in Ui having u as a (proper or non-proper)
prefix, i.e., ntraces(u) = |{u′ ∈ Ui | u ⊑ u′}|.

A LSPT T = (V, parent) for Ui is complete if no LSPT
T ′ = (V ′, parent′) exists for Ui such that V ⊂ V ′.

The size of LSPT T = (V, parent) is size(T) = |V |, i.e., the
number of its nodes.

The goal of function LSPT() is to build a complete LSPT
for Ui in central memory. To this end, the algorithm scans Ui
in lexicographic order, since, under this ordering, deciding
which trace prefixes are nodes of the tree is straightforward
and memory-efficient.

To keep an as small as possible RAM footprint of the
LSPT, the algorithm represents in central memory each of
its nodes (u0, . . . , ud−1) by a unique identifier λ(u0, . . . , ud−1).
Unique identifiers for each trace prefix are available for
free when traces are extracted from a scenario generator. In
case traces are taken from an input database, any efficiently
computable injective function of finite sequences of input
values (or even a cryptographic hash function, when the
probability of conflicts is small enough) can be used.

Pseudocode of function LSPT() is reported in Algo-
rithm 3.

1 function LSPT(Ui)
2 input Ui, slice of traces output T = (V, parent),

Longest Shared Prefix Tree of simulator states
3 T ← empty tree;
4 uprv ← empty (will keep last trace);
5 foreach u ∈ Ui in lex order do
6 if u is not the first trace in Ui then
7 lsp← longest (possibly empty) prefix

shared by u and uprv;
8 par← longest node in V s.t. par ⊑ lsp

(possibly none) ;
9 if lsp ̸∈ V then

10 add lsp to V ;
11 parent(lsp)← par ;
12 child← shorter prefix of uprv s.t.

lsp ⊏ child ∈ V and parent(child) = par
(par can be none; at most one such
node exists) ;

13 if child exists then
14 parent(child)← lsp;
15 ntraces(lsp)← ntraces(child);
16 else ntraces(lsp)← 1;
17 prefix← lsp ;
18 while prefix is not none do
19 ntraces(prefix)++ ;
20 prefix← parent(prefix);
21 uprv ← u ;
22 return T ;

Algorithm 3: Function LSPT().

Algorithm 3 aims at creating a new node of the LSPT for
any simulator state associated to a prefix of the current trace
u that satisfies condition 1. of Definition 13.

To recognise the trace prefixes to add as nodes, the
function again exploits the fact that traces in Ui can be

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 19

accessed in lexicographic order. This implies that (unique
identifiers of) prefixes of u that can be added as nodes of
the LSPT must belong to the last-processed trace uprv. Also,
at most one prefix of each u can be added as a node of the
LSPT.

Thus, Algorithm 3 proceeds as follows.
1. It selects the longest (possibly empty) prefix lsp shared

by u and uprv (line 7) and the longest prefix par ∈ V such
that par ⊑ lsp (possibly none, line 8).

2. It infers that the current trace u and the previously
processed trace uprv are identical up to lsp and differ at the
next time point.

3. If lsp ∈ V , then lsp is already a node of the LSPT.
Otherwise, lsp satisfies condition 1. of Definition 13 and is
added as a new node of the LSPT. In particular:

3.1. Node lsp is added to the LSPT as a child node of
par (which can possibly be the empty prefix or none; in the
latter case, lsp becomes the root of the LSPT).

3.2. As node lsp could already have children in the LSPT,
the tree may need to be rearranged to accommodate the new
label lsp. Tree rearrangement is again very efficient thanks
to the lexicographic order of the input traces. In fact, par can
have at most one child that needs to be moved and needs to
become a child of lsp.

This child, if exists, must be the shortest prefix child of
the previous trace uprv already in the LSPT, and such that
lsp ⊏ child and parent(child) = par (where par can be none,
line 12).

If such a child node exists, then it is moved as to become
a child of lsp (line 13) and value for ntraces(lsp) is temporarily
set to ntraces(child).

Otherwise (node child does not exist), value for
ntraces(lsp) is temporarily set to 1 (to account that it occurs
in uprv).

4. In both cases, the values of ntraces (prefix) for each
LSPT node prefix ⊑ lsp (including both lsp and the empty
prefix, if the latter is in the LSPT) are incremented by 1,
in order to take into account their occurrence in trace u
(lines 17–20).

Lemma 1 (Function LSPT()). Data structure T computed by
function LSPT() (Algorithm 3) is a complete LSPT of Ui according
to Definition 13.

Proof. Let Ui = u0, . . . ,un−1. We prove the lemma by in-
duction, by showing that, for each j ∈ [1, n], the tree T
computed by function LSPT() after having processed the set
U j
i = u0, . . . ,uj−1 of the first j traces of Ui in lexicographic

order is a complete LSPT for U j
i .

Base case When j = 1, U j
i consists of a single distur-

bance trace u0 = (u0, . . . , uh−1). In this case, function LSPT()
would just store u0 as uprv and T would be the empty
tree, which is a complete LSPT when the set of traces is a
singleton. The thesis trivially follows.

Inductive case Assume that, after having processed the
first j − 1 ≥ 1 traces of Ui (i.e., set U j−1

i), data structure T
computed by Algorithm 3 is a complete LSPT for U j−1

i ac-
cording to Definition 13. We now show that, after processing
trace uj−1, the revised T is a complete LSPT for U j

i .
As uj−1 is not the first processed trace, we have that:

uprv = uj−2 (as set in the previous iteration, see line 21

of Algorithm 3), lsp is set (line 7) to the longest (possibly
empty) prefix shared by uj−1, and uprv = uj−2, and par is
set (line 8) to the longest prefix of lsp (hence, occurring in
both uj−1 and uj−2) denoting a node already in T , and to
‘none’ if none exists.

Clearly, lsp is a LSP of U j
i and, since traces in Ui are

lexicographically ordered, no additional LSPs of Uj
i can

exist.
If lsp is already a node in T , the algorithm ignores

it and increments by 1 the value of ntraces for all the T
nodes occurring in the current trace uj−1 (lines 17–20), thus
making such values satisfy again Definition 13.

On the other hand, in case lsp ̸∈ V , the algorithm adds it
to the tree (line 11) making the tree complete with respect to
U j
i . The new node is added to T as a child of par, which, by

construction, is either the longest proper prefix of lsp already
in V or ‘none’ (if no such prefix exists, in which case, the
newly added lsp becomes the new root of the tree), and thus
satisfies condition 2. of Definition 13.

However, the introduction of a new node in T (lsp) could
make condition 2. false for some of the pre-existing children
nodes of par in T .

For a child node child of par to violate condition 2. in
the current iteration, it must be that par ⊏ ux ⊏ child for
some ux ∈ V . Since the only newly added node is lsp,
it must be ux = lsp. Also, given that the input traces are
in lexicographic order, at most one such child node exists.
Algorithm 3, by reassigning the parent of child (if it exists)
to lsp, makes condition 2. of Definition 13 true again.

The only thing that remains to show is that the value of
ntraces for all nodes of T is correctly revised. We show this
in two steps:

1. The value of ntraces for nodes of the tree as computed
before line 17, is correct if we consider only traces processed
up to iteration j − 1.

2. The current trace uj−1 is correctly taken into account
in the revision of ntraces values, in lines 17–20.

As for step 1., only the value of ntraces for the newly
inserted node lsp must be set (in case such node is added
to T). Node lsp might have zero or one children (as seen
above).

If lsp has a child node (child), then the set of traces within
U j−1
i (hence, excluding the current trace uj−1) having prefix

lsp are exactly those having (the longer) prefix child (line 15).
Otherwise (lsp has no children), trace uj−1 shares lsp as a

prefix only with (the previous) trace uj−2 among those seen
so far. To see why, assume, for the sake of contradiction, that
two traces ua and ub exist in U j−1

i which both have lsp as a
prefix. Since U j−1

i is lex-ordered, there must exists up such
that lsp ⊑ up ⊑ ua and lsp ⊑ up ⊑ ub, and such that ua and
ub differ immediately after up. But this would mean that up

would have been recognised as a LSP and added as a node
of T in a previous iteration of the algorithm, when the last
trace between ua and ub was processed (contradiction). This
proves the correctness of setting ntraces(lsp) to 1 in line 16
(when the current trace uj−1 has not yet been considered in
this computation).

As for step 2., lines 17–20 increment by 1 the value of
ntraces for all the nodes of T occurring as prefixes of the
currently processed trace uj−1 (including lsp), thus taking
into correct account the existence of the uj−1.

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 20

As a result of the above, T is a complete LSPT for Uj
i and

the thesis follows.

D.2 Algorithm correctness

Proposition 3 (Correctness of Algorithm 1). Let π = (H,U)
be a SLV problem for SUV H = (T,X, x0,U,Y, φ, ψ), with
U being defined as input traces associated to time quantum
τ ∈ T \ {0}, and let m ∈ N+.

Given any partition {U0, . . . ,Uk−1} (k ∈ N+) of U , let
Ξ = (χ0, . . . , χk−1) be the k-parallel simulation campaign
such that χi (i ∈ [0, k − 1]) is computed by Algorithm 1 on
inputs Ui (under any user-defined order), τ , and m.

We have that:
1. For all i ∈ [0, k − 1], the sequence U(χi) is Ui;
2. There exists m∗ ∈ N+ such that, if m ≥ m∗, all χis (i ∈

[0, k− 1]) are shortest m-memory simulation campaigns.

Proof. We first make the following observations:
a) At any time during execution of Algorithm 1, when

sequence of simulator commands χ (a prefix of the over-
all simulation campaign) has been computed, the set of
simulator states λ such that stored(λ) = true are exactly
those that would be available in the simulator memory after
the actual execution of χ. In particular, stored(λ) is set to
true (respectively false) immediately after appending to χ
command STORE(λ) (respectively FREE(λ)).

b) Each of the computed simulation campaigns is ex-
ecutable. This is immediate, as LOAD(λ)/FREE(λ) (respec-
tively, STORE(λ)) commands are issued only for simulator
state identifiers λ available (respectively, not available) in
the simulator memory, as requested by Definition 11. Also,
when j > 0, function sim_cmds() always finds state λload to
load in line 2. This is because, if not, then the j-th trace
would have no prefix in common with any of the previous
traces, not even the empty prefix, which is impossible.

The simulation campaign χ generated by Algorithm 1
has the form:

χi = χi,0 . . . χi,n−1

where n = |Ui| and, for each j ∈ [0, n−1], χi,j is the sequence
of simulator commands generated by function sim_cmds()
(Algorithm 2) on uj , the j-th trace of Ui.

From Algorithm 2, we know that each χi,j starts with
a LOAD command if j > 0 (omitted for j = 0), and then
continues with a sequence of RUN commands (possibly
interleaved with STORE and/or FREE commands). Each RUN
command covers a distinct constant portion of uj , and,
together, they cover the entire postfix of uj after the prefix
loaded with LOAD, if any. Finally, χi,j terminates with an
OUTPUT command.

Executability of χi guarantees that all LOAD, STORE and
FREE commands succeed, and Definition 11 and Proposi-
tion 1 together ensure that the input time function associated
to the final state reached by the simulator when executing
each χi,j (for all j) is exactly uj . Thus, point 1. immediately
follows from Definition 2.

As for the proof of point 2., if m is at least the number of
nodes of the LSPT, then each χi is a shortest campaign. This
can be shown along the lines of the proof of Proposition 2,

observing that, by Lemma 1, T is a a complete LSPT for Ui
(Lemma 1).

However, we also observe that the number of nodes
of T is most often a very loose upper bound for m∗. In
most cases, the simulation memory required to produce
shortest campaigns is much smaller than the number of
nodes of the LSPT. This is because function sim_cmds()
(Algorithm 2) greedily frees simulator memory (by injecting
FREE commands) has soon as it discover that a state will
not be needed to shorten the simulation of future traces
(i.e., as soon as its associated counter ntraces becomes zero).
The actual value for m∗ of course depends on the (possibly
random) simulation order chosen by the user.

APPENDIX E
CASE STUDIES

Our scenario generators for our three case studies below are
inspired from those in [4].

In order to focus the SLV activity on clearly selected
portions of the space of inputs and to keep the overall
number of traces under control, our scenario generators
enforce various constraints on the entailed scenarios.

We chose such constraints from (slight variations of)
those in [4] with the final aim to have a number of entailed
traces of around 50, 100, and 200 million for BDC, ALMA,
and FCS, respectively. Multiple simulation campaigns, then,
have been computed (see Section 6) for various random
portions of such sets of traces (from 25% to 100%), different
random seeds, and different optimisation settings.

E.1 Buck DC-DC Converter (BDC)
The BDC SUV model takes two inputs: the input voltage Vi
and the load R, which vary during time.

Our scenario generator enforces the following con-
straints on the time course of its inputs:

1) Both Vi and R may vary during time up to at most
±30% of their nominal values, in steps of ±5% and
±10% of their initial values.

2) Values for Vi and R are stable for 5 and 6 t.u., respec-
tively.

3) To have a proper set-up, Vi and R are assumed stable
to their nominal values for the first 2 t.u.

4) Vi and R do not change simultaneously.
5) Whenever Vi changes, R will change after 7 t.u.

By enforcing the constraints above and a time horizon
of 60 t.u., our scenario generator entails 49 971 109 input
traces, each one defining a piecewise constant function (time
quantum τ = 1 t.u.) over an input space of 25 different
values.

E.2 Apollo Lunar Model Autopilot (ALMA)
The ALMA SUV model takes as inputs attitude change re-
quests along each of the three axes (“Yaw”, “Pitch”, “Roll”)
as well as events signalling temporary failures of actuators
(reaction jets).

Our scenario generator enforces the following con-
straints on the time course of its inputs:

http://doi.org/10.1109/TSE.2023.3298432

This article appears in IEEE Transactions on Software Engineering, 2023. DOI: 10.1109/TSE.2023.3298432 21

1) Attitude requests arrive at each t.u., and each request
may ask for a unitary positive or negative change of
the attitude along at most one axis.

2) Attitude requests do not ask the autopilot to immedi-
ately undo the rotation requested along any axis in the
preceding t.u.

3) Two consecutive requests for attitude changes along the
same axis are 10 or 11 t.u. apart.

4) Only two given reaction jets (number 14 and 15) can be
subject to temporary unavailability, which are always
recovered within 6 to 7 t.u.. Jet unavailability events
occur every 12 to 13 t.u.

5) To obey each received attitude request, the autopilot
decides which reaction jets must be used at each t.u..
We further constrain attitude requests so that no jet is
used consecutively for more than 3 t.u.. Also, when a
jet (among number 14 and 15) is used for 2 t.u. in a row,
it will certainly become unavailable within 3 to 4 t.u.

The following additional constraints were enforced to
further limit the focus of the verification activity and the
overall number of traces.

6) Jet number 14 always becomes unavailable (respec-
tively, becomes available) immediately after the recep-
tion of a request for a negative (respectively, positive)
change in the Yaw attitude.

7) Jet number 15 always becomes unavailable (respec-
tively, becomes available) immediately after the recep-
tion of a request for a negative (respectively, positive)
change in the Roll or Pitch attitude.

8) Whenever a positive (respectively, negative) attitude
Roll request is received, the current attitudes along Yaw
and Pitch are at least (respectively, less then) a given
threshold value.

9) Whenever a positive (respectively, negative or null)
attitude Pitch request is received, the current attitudes
along Yaw and Roll are at least (respectively, less then)
a given threshold value.

By enforcing the constraints above and a time horizon
of 100 t.u., our scenario generator entails 107 535 209 input
traces, each one defining a piecewise constant function (time
quantum τ = 1 t.u.) over an input space of 432 different
values.

E.3 Fault Tolerant Fuel Control System (FCS)
The FCS SUV model takes as inputs failure events on its
four sensors (“throttle”, “speed”, “ECO”, “MAP”).

Our scenario generator enforces the following con-
straints on the time course of its inputs:

1) At time zero, all sensors are functioning properly.
2) Each faulty sensor recovers within the following time

bounds (in t.u.): 3–5 (throttle), 5–7 (speed), 10–15 (EGO),
13–17 (MAP).

3) At most one sensor is faulty at any given time.
4) A sensor fault occurs every 15–20 t.u.
5) Whenever a fault on the throttle sensor occurs, a fault

on the speed sensor will occur within 18 or 19 t.u.
6) Whenever a fault on the EGO sensor occurs, a fault on

the MAP sensor will occur within 20 or 21 t.u.
By enforcing the constraints above and a time horizon

of 100 t.u., our scenario generator entails 195 869 671 input

traces, each one defining a piecewise constant function (time
quantum τ = 1 t.u.) over an input space of 6 different values.

REFERENCES

[1] T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, and E. Tronci.
On minimising the maximum expected verification time. Inf. Proc.
Lett., 122, 2017.

[2] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. Simulator
semantics for system level formal verification. EPTCS, 193, 2015.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci. On
checking equivalence of simulation scripts. J. Log. Algebr. Meth.
Program., 120, 2021.

[4] T. Mancini, I. Melatti, and E. Tronci. Any-horizon uniform random
sampling and enumeration of constrained scenarios for simulation-
based formal verification. IEEE TSE, 2021.

[5] E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimen-
sional Systems (2nd Ed.). Springer, 1998.

This article appears in IEEE Transactions on Software
Engineering, 2023. DOI: 10.1109/TSE.2023.3298432

http://doi.org/10.1109/TSE.2023.3298432
http://doi.org/10.1109/TSE.2023.3298432

	Introduction
	Background and Motivations
	Contributions

	Formal Framework
	SUV simulators
	Simulation-based SLFV
	Shortest +
	Randomised +
	Parallel +

	Parallel computation of ()+
	Input
	Enabling parallelism
	Computing a from each slice
	BT
	Generation of commands

	Implementation and experimental results
	Implementation
	Case studies
	BDC
	ALMA
	Fault Tolerant FCS

	Experimental setting
	Experimental results
	Scalability of the campaign computation algorithm
	Campaigns efficiency parallelisation
	Campaigns efficiency available simulator memory
	Simulation speedups and time savings

	Limitations

	Related work
	Conclusions
	References
	Appendix A: Formal framework
	Modelling the System Under Verification
	SLFV
	Modelling the SUV operational environment

	Appendix B: SUV simulators
	Appendix C: Simulation-based SLFV
	Randomised +
	Parallel +

	Appendix D: Parallel computation of ()+
	Computing a from each slice
	Computing the BT

	Algorithm correctness

	Appendix E: Case studies
	BDC
	ALMA
	Fault Tolerant FCS

	References

