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Abstract—The increasing spreading of small commercial Un-
manned Aerial Vehicles (UAVs, aka drones) presents serious
threats for critical areas such as airports, power plants, gov-
ernmental and military facilities. In fact, such UAVs can easily
disturb or jam radio communications, collide with other flying
objects, perform espionage activity, and carry offensive payloads,
e.g., weapons or explosives. A central problem when designing
surveillance solutions for the localisation of unauthorised UAVs
in critical areas is to decide how many triangulating sensors to
use, and where to deploy them to optimise both coverage and
cost effectiveness.

In this article, we compute deployments of triangulating
sensors for UAV localisation, optimising a given blend of metrics,
namely: coverage under multiple sensing quality levels, cost-
effectiveness, fault-tolerance. We focus on large, complex 3D
regions, which exhibit obstacles (e.g., buildings), varying terrain
elevation, different coverage priorities, constraints on possible
sensors placement. Our novel approach relies on computational
geometry and statistical model checking, and enables the effective
use of off-the-shelf AI-based black-box optimisers. Moreover,
our method allows us to compute a closed-form, analytical
representation of the region uncovered by a sensor deployment,
which provides the means for rigorous, formal certification of the
quality of the latter.

We show the practical feasibility of our approach by com-
puting optimal sensor deployments for UAV localisation in two
large, complex 3D critical regions, the Rome Leonardo Da
Vinci International Airport (FCO) and the Vienna International
Center (VIC), using NOMAD as our state-of-the-art underlying
optimisation engine. Results show that we can compute optimal
sensor deployments within a few hours on a standard workstation
and within minutes on a small parallel infrastructure.
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(a) Leonardo Da Vinci International Airport (FCO) of Rome

(b) Vienna International Center (VIC)

Figure 1: Satellite views of our case studies (Google ©).

IN recent years, small Unmanned Aerial Vehicles (UAVs), or
drones, have become widespread, given their increasingly

lower prices and useful features. Besides the use of these
devices for leisure (e.g., photography) and public service
activity like disaster monitoring, the public has become more
and more aware of the risks that drones pose in several
scenarios. A commercial drone, in fact, can disturb or jam
radio communications, collide with other flying objects, per-
form espionage activity, and even carry offensive payloads
like weapons or explosives. For these and other reasons,
drones are seen as a serious threat in critical areas such as
airports, military bases, correctional centres, power plants, and
government sites. Figure 1 shows two examples of critical
areas: the Rome Leonardo Da Vinci International Airport
(FCO) in Italy and the Vienna International Center (VIC) in
Austria, which we have used as our case studies.
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Many surveillance solutions, based on a variety of tech-
nologies, have been designed to quantify and reduce the risks
stemming from the presence of unauthorised drones in critical
areas. In general, an anti-drone system has one or more
goals, which may target both the drone and its controller:
detection, localisation, identification, tracking, and countering.
In this article, we focus on deployments of sensors aiming at
localising unauthorised (possibly malicious) drones.

Each technology has its advantages and limitations. We
refer the reader to [1], [2] for a survey. In our setting, i.e.,
in the case of critical areas, an anti-drone system must have
certain specific features, and this limits the suitability of
most sensor typologies. Namely, the system must be able to
detect drones over possibly large distances (e.g., up to several
kilometres within an airport); the localisation must be reliable
with minimal to no false positives and false negatives; the
system must be safely employable in public areas and at
close distance to people. Such requirements rule out video
and acoustic sensors, due to their low detection reliability, and
radar systems for their high-power electromagnetic emissions,
which may produce adverse health effects. Radio frequency
sensors, which detect and localise drones based on the radio
signals they emit, are among the most used technologies for
dealing with the problem [1]. They operate over lower frequen-
cies than radars and can effectively isolate the signals emitted
by drones from other radio frequency signals originating from
other sources (e.g., WiFi). Direction-finding radio frequency
sensors are able to localise drones via triangulation and offer
high reliability over large distances (up to several kilometres
in ideal conditions), with low to no impact from light and
weather conditions.

A. Motivation

The choice of the right sensor typology or of a mix of
different typologies only solves a part of the general problem.
When designing a system for drone localisation, it is crucial
to deploy the sensors in the best possible way. The two main
factors that influence the quality of an anti-drone system are its
cost-effectiveness and its ability to cover the Region of Interest
(RoI). The latter is usually formalised as coverage, a measure
of the extent of the portion of the monitored region where
the deployed sensors can effectively localise targets. Typically,
higher coverage requires higher costs, which stem from, e.g.,
the need of a higher number of sensors or the necessity to
deploy sensors in inconvenient positions (e.g., on the roof or
walls of a building, or where additional infrastructures must
be built), which increase installation costs. We note that a
single sensor, at the time of writing, may cost several tens of
thousands of dollars.

The problem of optimally placing a set of sensors (with re-
spect to a suitable blend of the conflicting objectives coverage
and cost) has been widely explored in the literature, due to its
relevance in many areas, e.g., sensor networks, infrastructure
security and safety, smart cities and smart homes. A discussion
on related work is provided in Section II.

Determining a deployment of sensors that shows good
coverage and cost-effectiveness measures may still not be

enough for many critical scenarios. For example, more elab-
orate coverage measures may need to be considered, which
take into account portions of the RoI with different priorities,
multiple sensing quality levels, and tolerance to sensor faults.
Also, in such settings, providing as output only aggregate –
although quantitative– quality measures (e.g., the ratio of the
volume of the RoI satisfactorily covered), is often not enough
to build trust in the quality of the deployment found, and
delivering compelling evidence about which portions of the
RoI are satisfactorily covered and which are not is crucial to
provide means for rigorous auditing and formal certification of
the quality of the deployment. It may be the case, for instance,
that a deployment which appears to well cover a critical
portion of the RoI is actually problematic, as it would not
withstand the failure of a single sensor. Or that a deployment
which covers most of the volume of the RoI still leaves drones
the sufficient amount of freedom to move undetected via,
e.g., narrow, worm-shaped corridors (which, e.g., could form
only after the sabotage of a single sensor), and approach, still
undetected, a critical target, thus causing serious damage. Note
that, being able to determine coverage point by point, as in
[3], [4], [5] in a discrete space is not enough to study this kind
of properties of a deployment.

B. Contribution

In this article, we present a novel approach to the sensor
placement problem based on computational geometry and
Artificial Intelligence (AI) Black-Box Optimisation (BBO).

In recent years, AI-based BBO techniques have witnessed
exceptional improvements; new algorithms and tools are now
able to tackle large and hard optimisation problems [6], [7],
[8]. These optimisers make use of a black-box that implements
the objective function and, possibly, the problem constraints.
Thanks to powerful AI heuristics and surrogate models auto-
matically learnt during search, these tools are powerful enough
to optimise the objective, subject to the provided constraints,
even if the black-box is computationally expensive to evaluate
(our case).

We designed and developed Geometry-based Sensor De-
ployment Coverage Analyser (GD-Cover), a software tool
that efficiently computes (via computational geometry and
statistical model checking) quality metrics for a given sensor
deployment, as well as a closed-form, analytical representa-
tion of the uncovered region which provides the means for
rigorous, formal certification of its quality.

We show that, using GD-Cover as a black-box, the sensor
deployment problem can be efficiently tackled by off-the-shelf
AI-based BBO solvers (NOMAD [9] in our experiments). Our
method scales very well over large and complex scenarios with
many obstacles and over large numbers of sensors.

To the best of our knowledge, our approach is also the first
to enable the computation of a closed-form 3D representa-
tion of the region not covered by a set of sensors. Finally,
thanks to our proof-of-concept visualisation web app, such a
representation can be navigated by the users, so to precisely
understand the characteristics of deployments and to facilitate
possible audits and certification.
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II. STATE OF THE ART

The problem of determining the optimal placement of
sensors inside a given region has been extensively studied in
the literature. An optimal placement is defined as a positioning
and configuration of a set of sensors that optimise given
Key Performance Indicators (KPIs). Most studies consider the
coverage performance metric, which measures the quality of
a deployment based on the portion of the RoI that it can
monitor. The configurations may vary depending on the kind
of sensors; for instance, camera sensors can be configured
by, e.g., tweaking orientation, pan, tilt, and zoom. Due to the
complexity of the problem and the large size of the scenarios
of interest, exact optimisation approaches are not generally vi-
able, and virtually all works in the literature exploit incomplete
(best-effort) optimisation techniques, typically metaheuristic
methods (e.g., evolutionary algorithms and particle swarm
optimisation) and various forms of gradient descent.

Sensor deployments are often very costly; therefore, many
existing techniques also minimise the overall cost of the
deployment. Other performance metrics have been studied,
such as least exposure coverage, fault tolerance, and minimum
overlapping (see, e.g., [10], [11], [12], [13], [14], [5]).

Several works, e.g., [15], [16], [17], [18], [19], [20], in-
vestigate the related problems of computing deployments of
wireless sensor networks and of UAVs optimising additional
KPIs such as connectivity, energy efficiency, and reliability.

Many existing studies assume a very simplified environmen-
tal setting, where the RoI is defined as a 2D space [21], [12],
[13], [22], [23], [24], [25], even if, in some cases (e.g., [26]),
sensors can be deployed at different heights. These techniques
cannot be applied in the case of UAVs localisation, where
targets fly in a 3D space, as the coverage of a 2D region
cannot be easily generalised to that of a large 3D scenario
with obstacles.

Several approaches consider the problem of monitoring
a 3D space, but with significant limitations affecting the
applicability of these approaches to localising small UAVs in
large critical areas, such as those considered here. In [5], [27],
[28], [11], [14], [29], the candidate points for placement all lie
on a 3D surface; in [30], [3], [4], [31], [32], [33], admissible
sensor positions or points to be monitored (or both) belong
to finite sets in the 3D space. In particular, in most existing
3D approaches, the RoI is discretised in cells. The visibility
algorithms work on the assumption that if a point in the cell
(e.g., the centroid) is visible, then the whole cell is covered.
This assumption becomes problematic in our setting. Consider,
e.g., our FCO case study: this environment has an area of
around 16 km2 and a height of 100 m. If we discretise the
space into 3D cubic cells with edges of length 50 m, we
would obtain around 12 800 cells (or target points). Although
this number is still manageable by existing approaches, we
note that a sensor deployment covering the centroid of a
125 000 m3 cell does not guarantee that it can localise a
50 cm–long drone anywhere within the cell. Conversely, if we
use much smaller cell edge lengths, such as 1 m, we would
obtain approximately 1.6 billion cells. Such a large number
would not be feasible to handle by any existing method

with reasonable time and computational resources, even if
exploiting graphical processing units, as in [34].

In practical applications, not all sensor deployments have
the same economic cost. Typically, the cost depends not
only on the number of deployed sensors, but also on their
characteristics and positions. The minimisation of the number
of sensors is studied in [4], [21], [22], [28], [31], [32];
however, it is often the case that the available sensors have
different prices due to different characteristics, so minimising
the number of sensors does not imply that the overall cost
is minimised. Furthermore, the cost of physically deploying a
sensor also depends on its position. For instance, mounting a
heavy sensor on a wall costs more than mounting it on a roof,
which in turn costs more than placing it on the ground. [3],
[5], [35], [27] assume sensors have a fixed cost, whilst [36],
[14] assign to each sensor a cost based only on the altitude
and the roughness of the terrain in its position. Conversely,
our approach handles this issue as a first-class citizen.

Summing up, to our knowledge (see also the recap in
Appendix A), no other available approach optimises sensor
deployments for UAV localisation in large, complex 3D re-
gions with obstacles, varying terrain elevation, and in presence
of constraints on admissible placements, by simultaneously
taking into account sensors of different typologies, different
placement costs, multiple sensing quality levels, fault toler-
ance. Also, no other approach supports the computation of a
closed-form 3D representation of the region not covered by a
candidate deployment.

III. PROBLEM MODELLING

In this section we present our geometric modelling approach
to the computation of an optimal sensor deployment. In the
following, R, R0+, R+ denote the set of all, non-negative, and
strictly positive real numbers, while N and N+ denote the set
of non-negative and strictly positive integers.

Although our forthcoming definitions are well posed for real
spaces of any number of dimensions, they will be given for
regions of the 3D space R3, since this is what we need for our
problem. We thus use the general term region to denote any
set of points in R3. Also, given three points A,B,C ∈ R3,
we define by AB the straight-line segment between A and
B, by AB its length (i.e., the Euclidean distance between
A and B), and by ∠BAC ∈ [0, π] the angle formed by
AB and AC. Finally, given two regions R,R′ ⊆ R3, the
distance between R and R′, notation dist(R,R′), is defined as
min

{
XY | X ∈ R, Y ∈ R′}. This notion naturally reduces

to the Euclidean distance XY between two points X and Y ,
if R = {X} and R′ = {Y } are both singleton sets.

A. Region of Interest (RoI) and obstacles

The RoI, i.e., the region where the presence of unauthorised
UAVs is to be detected, is some R ⊂ R3 having finite volume.

The RoI can exhibit obstacles, e.g., buildings, other artifacts,
or simply varying ground elevations, which can hinder the
radio visibility of some target points by a deployed sensor.
Being able to explicitly model the position and shape of such
obstacles is thus crucial to accurately evaluate the quality of

http://doi.org/10.1109/TSMC.2023.3327432


This article appears in IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2023.3327432 4

a sensor deployment. We assume that the space occupied by
obstacles in the RoI is defined as a (typically disconnected)
region O ⊂ R.

B. Priorities

For certain kinds of environments, the coverage of some
portions of the RoI R is more important than that of others.
In an airport, for instance, being able to localise a UAV flying
above the runways could be more important than localising
one close to the terminals.

We assume that R is partitioned into a finite number of
regions having different priorities. Priorities are encoded as
elements in finite setH. The overall RoIR is hence partitioned
into {Rh | h ∈ H}, where Rh is the portion of R having
priority h. Being a partition, each point in R is assigned
exactly one priority value.

C. Sensor deployments, quality-guaranteed point coverage by
triangulating sensors

The uncertainty in detecting a target provided by two
triangulating sensors is known to vary with respect to the
target-sensor distance and the angle θ between the target and
the sensors (see, e.g., [37]).

Multiple sensing quality levels: We support optimisation
with respect to multiple sensing quality levels. To this end,
we assume that a finite set Q is defined to denote different
requested sensing quality levels. This set is ordered so that
higher values in Q denote higher quality levels.

Sensing angles: For each q ∈ Q, we assume that a sensing
angle range [θmin,q, θmax,q] ⊂ (0, π) is provided, defining
bounds to be respected (Definition III.1) by the angle θ
between the target and the two triangulating sensors, to ensure
quality level q. For physical reasons, we can assume that
[θmin,q′ , θmax,q′ ] ⊆ [θmin,q, θmax,q] for q ≤ q′. Note that sensing
angle ranges are within (0, π) so that, to be localised with any
useful accuracy, the target must not be collinear with the two
sensors (as collinearity would hinder triangulation [37]).

Sensors: Each sensor s is defined in terms of its admissible
positions As ⊆ R3 (i.e., where it can be placed), the function
costs : As → R+ defining the cost to deploy the sensor
in each admissible position, and its technical capabilities.
Admissible positions may not correspond with R: indeed,
there may be portions of R where sensors cannot be deployed
(e.g., bodies of water or airport runways) or, conversely, it may
be possible to deploy sensors outsideR. The technical capabil-
ities of s are available in the form of a set {rs,q, fs,q | q ∈ Q}.
For each sensing quality level q, rs,q ∈ R+ and fs,q ∈ R+

are, respectively, the maximum target distance and the radius
of the First Fresnel Zone (FFZ) needed by s to detect a
target UAV with the accuracy required to satisfy quality level
q (Definition III.1). The FFZ of sensor s when detecting a
target at position X ∈ R and ensuring quality level q is the
3D ellipsoid whose main axis is the segment connecting the
position of s and X and whose secondary axis has length
2fs,q . The FFZ radius of s (fs,q) is the greatest value such
that, if a stray component of the signal transmitted by an UAV
bounces off an object within the FFZ and then arrives at s,

s1 s2

X

θd1

d2

rs1,q rs2,q

Figure 2: 2D q-coverage of point X by two sensors, with two
obstacles (in black); di = dist(XD(si),O) > fsi,q , i ∈ [1, 2].

the resulting phase shift will be considered to have negative
impact on the signal quality incompatible with sensing quality
level q. Given the ranges on the transmitting/receiving power
of the employed antennas and on the band used, as well the
maximum distance rs,q for each q ∈ Q, upper bounds to the
values of fs,q for each s and q can be computed once and for
all. Again, for physical reasons, we assume that rs,q ≥ rs,q′

and fs,q ≤ fs,q′ for q ≤ q′.
Sensor deployment: We finally define a deployment of a set

of sensors S a function D assigning an admissible position
D(s) ∈ As to each s ∈ S.

Definition III.1 (see Figure 2 for an illustration in 2D)
formalises our criterion to establish whether a point X is
covered by two sensors with quality at least q.

Definition III.1 (Point q-coverage by triangulating sensors).
Point X ∈ R−O is covered by two triangulating sensors s1
and s2 of deployment D with quality at least q (in short: X
is q-covered by s1 and s2) if:

(1) X is within the ranges of s1 and s2 for quality level q:
dist(X,D(si)) ≤ rsi,q , i ∈ [1, 2];

(2) The line of sight between X and each of the two sensors
lies at a distance higher than the radius of the sensor’s
FFZ for q from any existing obstacle: dist(XD(si),O) >
fsi,q , i ∈ [1, 2];

(3) The angle θ formed by the points where the two sensors
are placed and X is within the sensing angle range for
q: ∠D(s1)XD(s2) ∈ [θmin,q, θmax,q].

We write coverq(X, s1, s2) = 1 to denote that X is q-
covered by s1 and s2, and coverq(X, s1, s2) = 0 otherwise.

D. Fault-tolerant quality-guaranteed coverage

In critical settings such as ours, tolerance to sensor faults is
an important issue. Hence, we will define quality-guaranteed
coverage even in (limited) presence of sensor faults. Namely,
Definition III.2 defines the whole portion of the RoI not
guaranteed to be covered by a sensor deployment D with a
required quality level q ∈ Q when in presence of at most j ≥ 0
(unknown) faulty sensors (in short: (j, q)-uncovered region).

Definition III.2 ((j, q)-uncovered region). The set of points
X ∈ R−O (j, q)-uncovered by a deployment D is:
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This article appears in IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2023.3327432 5

U j,q =
{
X ∈ R−O

∣∣ coverj,q(X) = 0
}

(1)

where: coverj,q(X) = min
F∈2S

|F |≤j

max
(s1,s2)∈(S−F )2

s1 ̸=s2

coverq(X, s1, s2).

Namely, coverj,q(X) is 0 for those points X for which there
exists a set F of at most j sensors that, if faulty, would prevent
q-coverage of X by the others; coverj,q(X) is 1 otherwise.

E. Objective

Given a RoI R with obstacles O, a partitioning of R
into priority regions {Rh | h ∈ H}, sets Q (sensing quality
levels) and S (sensors), and a maximum number k > 0 of
sensors which can be faulty, our goal is to find a (admissible)
deployment D∗ = S → R3 of S that minimises an objective
function of the form:

D∗ = argmin
D

Placem(D) + Uncov(D) (2)

given as the linear combination of the following (possibly
conflicting) KPIs:

• Placem(D) is the sensors placement cost of D, i.e.,
the actual expense due to the chosen placement of the
sensors:

Placem(D) =
∑
s∈S

costs(D(s)). (3)

• Uncov(D) is the cost due to lack of coverage of D, i.e.,
the weighted volume of R not (satisfactorily) covered by
D, under at most k faulty sensors:

Uncov(D) =
k∑

j=0

∑
q∈Q

∑
h∈H

w(j, q, h)×volume(U j,q∩Rh).

(4)
Each weight w(j, q, h) denotes the implicit cost of not

ensuring (j, q)-coverage of a unit of volume in Rh.
Such two (possibly conflicting) KPIs are defined as to

represent an amount of money, and this allows us to sum them
up into a single objective value (2), the Overall Deployment
Cost (ODC) of D. Thus, the objective function would consider
both the actual expense for the envisioned placement of the
sensors in the chosen locations and the implicit costs due to
their lack of (satisfactory) coverage.

IV. BLACK-BOX OPTIMISATION

We cast the problem of finding an optimal sensor de-
ployment as a constrained optimisation problem, where the
objective function is (2), the search space is the set of
assignments of 3D coordinates to each available sensor s,
and where constraints enforce each sensor s to be positioned
within its admissible region As and to triangulate with at least
one other sensor (i.e., all sensors contribute to the coverage).

The complexity of computing the regions U j,q (see (4))
needed to evaluate the objective function and their volumes
hinders the possibility to exploit symbolic approaches (e.g.,
Mixed Integer Linear Programming, Constraint Optimisation
and the like) for scenarios of practical relevance, even those

approaches explicitly aimed at solving very large instances,
such as, e.g., [38], [39].

We thus exploit AI-based BBO to solve realistic instances
of the problem. BBO solvers make use of a black box that
implements the objective function and the problem constraints.
Thanks to powerful AI heuristics and surrogate models auto-
matically learnt during search, these tools are powerful enough
to optimise the objective, subject to the provided constraints,
even if the black box is computationally expensive to evaluate
(our case). In particular, state-of-the-art BBO solvers aim at
reducing as much as possible the number of invocations of the
(expensive) black box.

A BBO solver (we experimented with the state-of-the-art
NOMAD [9] optimiser), repeatedly invokes our simulator
(GD-Cover, see Section V) as a black box on multiple,
intelligently-chosen candidate deployments. GD-Cover is in
charge of computing both the objective value of the input de-
ployment D and how much D violates the problem constraints
(or, conversely, how robustly D satisfies such constraints).
This combined feedback is then provided back to the BBO
solver, which is in charge to find a better candidate deployment
to submit to GD-Cover, also building and exploiting a local
surrogate model of the solution space.

Given that our problem is highly non-linear and realistic
instances are very large, finding a global optimum is an
unviable option. BBO solvers like NOMAD are intrinsically
incomplete, but guarantee global convergence to local optima
and include sophisticated AI-based heuristics and random
restarts to drive the search towards high-quality optima.

To exploit the availability of highly parallel computational
infrastructures, possibly concurrently used for many tasks, we
designed the two-level loosely-coupled parallel architecture
shown in Figure 3. The overall system is assumed to work
on overall n computational nodes. An orchestrator process
(left) samples a high number N of random deployments (step
1) and asks GD-Cover (a highly-parallel process itself, see
below) to evaluate their objective values (steps 2–3). These N
random deployments are then sorted from the best to the worst
by the orchestrator (step 4) and then used (step 5) as initial
assignments to launch, in parallel, n1 ≤ N BBO solvers,
where random deployments are assigned to the available
solvers in the order defined earlier (best initial deployments
first), as soon as they become idle (this is equivalent to the
sequential repeated invocation of a single optimiser using N
restarts, where the best random deployments are used first).
Each of the n1 solvers uses GD-Cover as its black-box.
The best deployment found is given as the final solution.
However, during the process, the current optimal deployment
can be returned at any time, should the available time budget
be over. GD-Cover itself (see Section V) is deployed as a
highly-parallel computational service consisting of a front-end
process for each of the n1 BBO solvers, a centralised task
dispatcher, and n2 parallel helper processes, running on the
remaining nodes (thus, n2 = n− n1 − 2).

V. GD-COVER

In this section we present GD-Cover, a highly-parallel tool
written in Java that, given a description of the geometry of the
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Figure 3: High-level architecture of our BBO-based approach.

RoI R and of its obstacles O (Section III-A), a partitioning
{Rh | h ∈ H} of R in priority regions (Section III-B), a
deployment D of a set of sensors S with known properties
for a given set of sensing quality levels Q, an angle interval
[θmin,q, θmax,q] for each q ∈ Q, the maximum number k of
sensors that can be faulty, offers the following services (one
or more services can be requested at the same time):

1. computes a quantitative measure of how much problem
constraints are violated by D (thus proving that D is not
admissible), or of how robustly they are satisfied (thus
certifying that D is admissible);

2. computes a closed-form representation of the region
(j, q)-uncovered by D for any j ∈ [0, k] and q ∈ Q;

3. efficiently estimates, by means of statistical model check-
ing, the value of the objective function (Section III-E)
with user-specified precision and statistical confidence.

GD-Cover has been designed to serve as a black box for our
pool of BBO solvers seeking an optimal sensor deployment for
a shared scenario. Hence, it is deployed as a highly distributed
system, with each process being configured with a copy of
the scenario of interest (e.g., RoI, priorities, obstacles) and
problem parameters. In particular, n1 parallel processes are
deployed, one per BBO solver, which act as front-ends (see
Figure 3), and delegate the most intensive computations to a
pool of n2 helper processes, orchestrated by a centralised task
dispatcher which guarantees adequate load balancing among
the n1 optimisation processes. The following sections describe
the computations carried out by GD-Cover in more detail.

A. Polyhedral geometry–based reasoning

GD-Cover performs its computations exploiting concepts
from computational geometry. The key observation of the
suitability of geometric reasoning to perform the computations
above is forthcoming Proposition V.1, which shows how a
representation of the (j, q)-uncovered region U j,q (Defini-
tion III.2) can be provided in geometric terms, by relying on
the following geometric notions: a) The β-bloating of region
R, which is the set of points having distance at most β ∈ R+

from R: bloat(R, β) =
{
X ∈ R3 | dist(X,R) ≤ β

}
⊇ R;

b) The projection of point X onto region R, which is the
region of points Y such that the segment XY intersects R:
proj(X,R) =

{
Y ∈ R3 | XY ∩R ̸= ∅

}
(this is a specialised

version of the projection defined in [40]). Note that, given
point X and region R, the set of points Y such that the
segment XY has a distance from R at most a given threshold
β can be defined as proj(X, bloat(R, β)).

s1 s2

X

θ

U range
s1

U range
s2

UO
s1 UO

s1

UO
s1

UO
s2

UO
s2

UO
s2

Uangle
s1,s2

Uangle
s1,s2

Uangle
s1,s2

f

f

Figure 4: 2D example of region Us1,s2 uncovered by sensors
s1 and s2 (grey region, formula (6)). Different elements of
the union (6) are highlighted with different tones of grey. The
figure assumes, for simplicity, fs1 = fs2 = f.

Proposition V.1 (Geometric representation of the
(j, q)-uncovered region). The (j, q)-uncovered region of
Definition III.2 can be equivalently defined as:

U j,q =
⋃

F∈2S

|F |≤j

⋂
(s1,s2)∈(S−F )2

s1 ̸=s2

Uq
s1,s2 − O (5)

with

Uq
s1,s2 =

[
U range,q
s1 ∪ U range,q

s2

]
∪
[
UO,q
s1 ∪ U

O,q
s2

]
∪ U angle,q

s1,s2 (6)

where, for i ∈ [1, 2]:
• U range,q

si is the region out of range of si:

U range,q
si = {X ∈ R | dist(X,D(si)) > rsi,q} ,

i.e., the complement of a sphere of radius rsi,q centred
in the position of sensor si, D(si).

• UO,q
si is the region not covered by si because of obstacles.

It is the set of points X ∈ R such that the distance
between an obstacle (a point in O) and the straight-line
segment connecting X with D(si) is at most the FFZ
radius of si for quality level q, fsi,q:

UO,q
si = proj(D(si), bloat(O, fsi,q)) ∩R.

• U angle,q
s1,s2 is the region not covered by s1 and s2 because of

excessive sensing error. It is the set of points X ∈ R such
that the angle ∠D(s1)XD(s2) formed by X with the po-
sitions of the two sensors is outside range [θmin,q, θmax,q]:

U angle,q
s1,s2 = {X ∈ R | ∠D(s1)XD(s2) ̸∈ [θmin,q, θmax,q]} .

Proofs are delayed to Appendix B. Figure 4 illustrates
Proposition V.1 in 2D and under no faults (i.e., j = 0), by
showing the region uncovered by the sensors in Figure 2.

To carry out its tasks efficiently, GD-Cover approximates the
environment, i.e., the RoI and obstacles thereof, and performs
all its computations in terms of bounded and unbounded
convex polyhedra in R3. Polyhedral representations are indeed
standard when handling data about geographic areas, terrain
asperities, buildings, and other kinds of artifacts and shapes
(e.g., the geometry of the runways at an airport) within
Geographic Database Systems and Computer Aided Design
tools. Such a representation has several advantages: (i) every
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3D region can be (both over- and under-) approximated with
arbitrary precision by a set of convex polyhedra (typically a
small number of polyhedra guarantees good approximations);
(ii) since convex polyhedra can be defined via linear con-
straints, they are easy to manipulate efficiently using standard
computational geometry techniques and libraries.

A union of convex polyhedra, in general, is not a convex
polyhedron. However, there are well-known techniques to ma-
nipulate unions (i.e., sets) of convex polyhedra very efficiently
(some are briefly outlined in Section V-C).

Being able to represent arbitrary regions with unions of
polyhedra yields a very convenient framework to perform
complex operations. In fact, the union or the intersection of
unions of polyhedra can still be efficiently computed as a union
of polyhedra. In the case of the difference and complement
operations, the result is a union of non-closed polyhedra;
however, for our purposes such regions can be safely over-
or under-approximated with unions of closed polyhedra with
arbitrary precision. In the sequel, we will refer to convex
closed polyhedra simply as polyhedra, and use the term
polyhedral representation of a region to signify that the region
is defined as a union of closed convex polyhedra.

Although the GD-Cover primary inputs are polyhedral,
some of the computed regions (mainly those described in
Proposition V.1) are non-polyhedral. GD-Cover computes
polyhedral (under- and over-) approximations for them accu-
rate up to a user-specified error threshold ρ ∈ R+. This will
be the maximum Euclidean distance between a non-polyhedral
region (e.g., U range,q

s , bloat(O, fs,q), and U angle,q
s1,s2 as defined in

Proposition V.1, with s, s1, s2 ∈ S, q ∈ Q) and its computed
polyhedral (under- and over-) approximations.

B. Evaluation of constraints

The sensor positioning requirements outlined in Section IV
break down to a number of problem constraints. GD-Cover
evaluates each of them to a positive value when violated (in
which case the resulting value is an indication of how much the
constraint is violated), and to a zero-or-negative value when
satisfied (in which case the resulting value is an indication
of how robustly the constraint is satisfied with respect to
perturbations of the candidate deployment).

Let q0 be the lowest sensing quality level in Q. For each
sensor s ∈ S, constraints are as follows:

1) Sensor is placed not within or too close to obstacles:
If D(s) ∈ bloat(O, fs,q0) (i.e., if s is within an obstacle
or too close to an obstacle even for the lowest sensing
quality level of interest), then the constraint is declared vi-
olated with cost dist(D(s),R − bloat(O, fs,q0)). Otherwise,
the constraint is declared satisfied with robustness value:
−dist(D(s), bloat(O, fs,q0)).

2) Sensor is placed within its admissible region: If D(s) ̸∈
As (i.e., if s is positioned outside its admissibility region), then
the constraint is declared violated with cost dist(D(s),As).
Otherwise, the constraint is declared satisfied with robustness
value: −dist(D(s),R−As).

3) Sensor is not isolated: The constraint evaluates to d =
mins′∈S−{s}

(
dist(D(s),D(s′))− rs,q0 − rs′,q0

)
. Thus, if d >

0, then the constraint is declared violated with cost d, which is
an indication of how much s must be moved to become non-
isolated. Otherwise, if d ≤ 0, then the constraint is declared
satisfied with robustness value d, which is an indication of
how much s should be moved to become too far with respect
to all sensors with which s could now triangulate.

C. Computing closed-form polyhedral approximations of the
uncovered region

Here we show how GD-Cover computes polyhedral repre-
sentations of U j,q , the regions (j, q)-uncovered (for j ∈ [0, k]
and q ∈ Q) by the specific deployment D of sensors S
given as input, as defined in Proposition V.1. From this rep-
resentation, it will be easy to compute any kind of additional
quality metrics of the input sensor deployment, hence also
any (computable) objective function. This makes our approach
extremely flexible (but see Section V-D).

Proposition V.1 defines region U j,q as unions of intersec-
tions of a number of regions, Uq

s1,s2 , one for each pair of dis-
tinct sensors s1 and s2, from which the region occupied by the
obstacles (O) must be removed. Each Uq

s1,s2 in turn is defined
by a union of 5 regions: U range

s1 , U range,q
s2 , UO,q

s1 , UO,q
s2 , U angle,q

s1,s2 ,
which are not polyhedral (see Proposition V.1). GD-Cover thus
computes polyhedral approximations for them. To overcome
the possible errors in such approximations, the tool can com-
pute both polyhedral under- and over-approximations of such
regions, using the value ρ given as input (see Section V-A) as
tolerance. Such under- and over-approximations in turn allow
the tool to compute both a polyhedral under-approximation
⌊U j,q⌋ and a polyhedral over-approximation ⌈U j,q⌉ of the
entire uncovered region U j,q . Hence: ⌊U j,q⌋ ⊆ Uj,q ⊆ ⌈Uj,q⌉.

Thus, points in R belonging to ⌊U j,q⌋ are certainly (j, q)-
uncovered by the given sensor deployment, points outside
⌈U j,q⌉ are certainly (j, q)-covered, while points lying in
⌈U j,q⌉− ⌊Uj,q⌋ are possibly (j, q)-uncovered, with the uncer-
tainty due to the possible errors introduced when computing
polyhedral approximations of U range,q

s1 , U range,q
s2 , UO,q

s1 , UO,q
s2 ,

U angle,q
s1,s2 for all pairs of distinct sensors s1 and s2. Priorities

of R ({Rh | h ∈ H}, Section III-B) can be straightforwardly
considered on top of ⌊U j,q⌋ and ⌈U j,q⌉: the uncovered portion
of the RoI with priority h is sandwiched between ⌊U j,q⌋∩Rh

and ⌈U j,q⌉ ∩ Rh.
GD-Cover exploits the C++ Parma Polyhedra Library [41]

for the efficient manipulation of convex polyhedra. Unfortu-
nately, most of the needed computations suffer from combina-
torial explosion in the worst case. To this end, GD-Cover takes
clever countermeasures to handle realistic scenarios efficiently
(see Appendix C for details). For example, when performing
operations on intersections of unions of polyhedra (which
could need to consider all tuples of polyhedra, one per union
being considered, and could result in an algorithm whose time
complexity in the worst-case is exponential in the number of
such polyhedra) and to efficiently seek polyhedra of interest
for the various computations, GD-Cover implements a spatial
indexing method based on AABB Trees [42], which greatly
reduces the number of operations needed in most cases (see
Algorithm 1 in Appendix C).
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To keep the size of the unions of polyhedra manipulated
by the algorithm small, and to mitigate the quadratic explo-
sion arising when considering all possible pairs of sensors,
GD-Cover performs parallel computation exploiting helper
processes via a centralised task dispatcher aimed at keep-
ing load balancing (see Figure 3 and Algorithm 2 in Ap-
pendix C). Also, GD-Cover partitions the RoI in m identical
cells (R1, . . . ,Rm) and delegates again the available helper
processes to compute the (j, q)-uncovered portion of each
Rc (c ∈ [1,m]), U j,q

c . Indeed, computing each single U j,q
c

is way faster than computing the entire U j,q , because, on
average, the sizes of the unions of polyhedra manipulated
by algorithm are smaller and the distances involved (much
higher than the range of each sensor) imply that several sensors
(and sensor pairs) are too far to possibly contribute to the
coverage of the considered cell and can be excluded upfront.
As a consequence, the computation of several of the U j,q

c s,
also thanks to the AABB Tree-based spatial indexing, takes
negligible time. Dynamic load balancing is dealt with by
taking m much larger than the number of helper processes, an
approach which is trivial to implement (see, e.g., [43], [44],
[10]). Section VI-C2 experimentally evaluates the scalability
of this parallelisation technique for the problem at hand.

We also implemented a proof-of-concept web app which,
given the output of GD-Cover (e.g., the uncovered region for
the optimal deployment computed by the BBO solver), allows
the user to visually and interactively navigate the RoI as a 3D
space, see where sensors are actually planned to be deployed
and which portions of the RoI are (un)covered, together with
their priorities (details are delayed to Appendix E). All this
enables any interactive analyses of the results, e.g., visually in-
specting any dangerous uncovered regions, e.g., worm-shaped
corridors which could be used by an attacker to move across
the RoI undetected.

D. Statistical model checking–based estimation of the objec-
tive value

By computing closed-form polyhedral representations of the
uncovered regions U j,q , any objective function can be evalu-
ated by analysing such regions. However, this computation is
an intensive task (see Section VI-C2) and is not strictly needed
to effectively guide the optimisation process, when only the
objective value and an evaluation of the problem constraints
is needed by the BBO solvers.

GD-Cover uses statistical model checking techniques (see,
e.g., [45] for a survey) to estimate the value of the ob-
jective function (2) efficiently via Monte Carlo sampling,
while offering statistical guarantees on the accuracy of the
approximation. Note that sampling points on a 3D fixed-
step grid, instead that in the whole (continuous) RoI, would
not yield any guarantees on the accuracy of the estimation
beyond the grid step length, and would not be as effective
in guiding the optimisation. In Section VI-C1 we show that
the approximation of the objective value requires only a tiny
fraction (≪ 1% in our case studies) of the time required to
compute the uncovered regions in closed form, and so the
objective function exactly. Hence, GD-Cover computes the

uncovered regions in closed form only for the final (optimal)
deployment and upon explicit user request.

To compute such an approximation of the objective value,
GD-Cover uses a Monte Carlo–based algorithm along the lines
of [46]. Namely, it combines the EBGStop approximation
algorithm [47] and the hypothesis testing technique from [48].
Given values for two parameters, ε, δ ∈ (0, 1), the algorithm
computes an (ε, δ)-approximation of the mean value µ of a
bounded random variable Z i.e., a value µ̂ guaranteed to lie
within µ(1∓ε) with probability at least (1−δ). The algorithm
iteratively generates (again exploiting the available pool of
parallel helpers, via the intercession of the task dispatcher to
handle load balancing among the n1 optimisation processes)
i.i.d. samples of Z until the termination condition of [46] is
satisfied, which implies that the objective value estimated from
the samples is a (ε, δ)-approximation of the true value.

This approach can be used whenever the objective value
for a candidate deployment can be expressed as the expected
value of a bounded random variable Z. Definition V.1 and Ob-
servation V.1 show that this is the case for the objective
function in (2). The complexity of (2) (which considers
multiple sensing quality levels as well as fault tolerance) also
indirectly shows that such an approach is very flexible, and
many other objective functions fall in this class (if not, our
BBO-based approach can still be used, but GD-Cover must be
asked to compute the uncovered regions in polyhedral form
on each candidate deployment to enable the computation of
the objective values, leading to longer optimisation times).

Definition V.1. Given R, D, H, Q, U , and Rh (h ∈ H) as
in Section III-E, let VR = volume(R) (a constant).

Let also (Ωj,q,F j,q,Prj,q) (j ∈ [0, k], q ∈ Q) be the
probability spaces such that:

• Ωj,q = {⊥}∪{h | h ∈ H} is the space of outcomes (⊥̸∈
H)

• F j,q = 2Ω
j,q

is the space of events
• Prj,q : F j,q → [0, 1] is the following probability measure:

– Prj,q(⊥) = 1− volume(Uj,q)
VR

– Prj,q(h) = volume(Uj,q∩Rh)
VR

for h ∈ H
– Prj,q(E) =

∑
ω∈E Prj,q(ω) for any E ⊆ Ωj,q .

Since {Rh | h ∈ H} is a partition of R, Prj,q(Ωj,q) = 1.

Observation V.1. For every j ∈ [0, k], q ∈ Q, let Zj,q be
a real-valued random variable defined on probability space
(Ωj,q,F j,q,Prj,q) (Definition V.1) as: Zj,q(⊥) = 0; Zj,q(h) =
VR × w(j, q, h) (for h ∈ H).

The value of the objective function (2) evaluated for deploy-
ment D is Placem(D)+

∑k
j=0

∑
q∈Q E(Zj,q), where Ej,q(Z)

is the expected value of Zj,q .

Observation V.1 is proved in Appendix B. Random variables
Zj,q , being bounded, clearly meet the requirements for the ap-
plication of the statistical model checking algorithm described
above. To generate i.i.d. samples for Zj,q , each delegated
helper (running in parallel) samples points X ∈ R uniformly
at random. For each sample X , the helper determines whether
X is (j, q)-covered for every j and q (or falls within an
obstacle, notation coverj,q(X) = 1) or not (coverj,q(X) = 0)
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by deployment D. This is implemented by exploiting standard
polyhedral geometry operations (note that all conditions of
Definitions III.1 and III.2 can be checked in this way, simply
by looping through the set of pairs of sensors). Value for
each random variable Zj,q is computed from X as follows:
Zj,q = VR × w(j, q, h) × (1 − coverj,q(X)), where h is the
(single) priority value of point X .

VI. EXPERIMENTS

We exercised our parallel system by computing optimal anti-
drone sensor deployments on two real-world case studies, the
Leonardo Da Vinci International Airport (FCO) in Rome, Italy,
and the Vienna International Center (VIC) in Vienna, Austria,
described below, having complementary properties: whilst the
former consists in a large environment with wide open spaces
and relatively low obstacles, the latter presents several tall
buildings condensed in a small area. In all experiments we
used NOMAD v. 3.9.1 as our BBO solver.

A. Experimental setting

1) Sensors: For each case study, we considered sensors of
two types (named T1 and T2), with different characteristics
(chosen in accordance to reference values from the literature,
e.g., [1]), and costs. For generality, we normalised all costs
for each case study to the price of a single sensor of type T1
(the cheapest type) simply installed on a pole on the ground,
at a height between 5–10 m (the cheapest installation). We
sought for optimal fault tolerant quality-guaranteed coverage
with two sensing quality levels (Q = {q0, q1}, with q0 < q1)
and one possible sensor fault (i.e., k = 1).

2) Priority regions: The RoI of each case study was
partitioned into two priority regions (low and high priority).

3) Weights of the objective function: Values of w(j, q, h)
(the cost of not (j, q)-covering a unit of volume of the
region having priority h, Section III-E) are reported in Ap-
pendix D-A2. For example, in FCO, weights model indiffer-
ence criteria such as: an increase of one volume unit of the
(0, q1)-covered high priority region (w(0, q1, high) = 20) is
equally exchanged with an increase of two volume units of
the (0, q0)-covered low priority region (w(0, q0, low) = 10).

4) Approximation thresholds and initial deployments: The
thresholds ε and δ used by GD-Cover to estimate the objective
value for each candidate deployment produced during opti-
misation were both set to 1%, thus guaranteeing that, with
statistical confidence 99%, the estimated objective value is
within a 1% error margin from its true value. Threshold ρ used
to compute polyhedral under- and over-approximations of the
regions mentioned in Section V-A was set to 10. Finally, the
number of random deployments generated and fed as starting
points to the multiple BBO solvers was set to N = 100.

5) Computational infrastructure: Experiments were per-
formed on a cluster of identical machines, each one equipped
with 2 AMD EPYC 7301 CPUs (overall 64 cores) and 256GB
RAM. Our loosely-coupled architecture (Figure 3) is particu-
larly suited for off-premise clusters as ours, which are shared
among a high number of competing processes (a common

paradigm aimed at keeping the cost of running parallel soft-
ware low). Below, we present the completion times that would
be obtained in three reference infrastructures, namely if fully
reserving the following number of machines: (i) 1 (n = 64,
using n1 = 5 BBO solvers and the remaining n2 = 57 nodes
as GD-Cover helpers); (ii) 10 (n = 640, n1 = 20, n2 = 618);
(iii) 50 (n = 3200, n1 = 100, n2 = 3098). A full scalability
analysis is delayed to Appendix D-B.

B. Case studies

1) Leonardo Da Vinci International Airport (FCO): This is
a prototypical example of a critical area, with a total surface
of approximately 16 km2, most of which taken by the three
4 km-long runways. We created a simplified 3D model of the
RoI as the union of 11 polyhedra with a height of 100 m.
The total volume to be monitored is thus 1.6 km3. The case
study presents many obstacles, modelled with 52 polyhedra,
ranging from large buildings such as hangars and terminals
to small service buildings. Figure 1a shows an aerial view of
FCO, whilst Figure 6 shows screenshots of our visualiser with
our 3D model.

Sensor costs are 1 (for type T1, reference cost) and 1.5 (T2).
Sensors can be placed everywhere on the ground (except for
the runways), and over the walls and roofs of (most of) the
obstacles (in the latter cases with cost overheads of 10% and
20%, respectively). Sensors of type T1 (respectively, T2) can
detect targets distant up to 1000 m (respectively, 1250 m) with
quality level q0, and up to 900 m (respectively, 1110 m) with
quality level q1. Sensing angle ranges for any sensor pair are
[25°, 155°] (for q0) and [30°, 150°] (for q1). All sensors have
the same FFZ (5 m) for both q0 and q1. The high-priority
portion of the RoI includes the runways and the space above
them, while the remaining region is low-priority.

2) Vienna International Center (VIC): This is a complex
of several buildings that hosts the headquarters of important
organisations of the United Nations. Its political and economic
relevance make this environment a critical area. VIC has
a substantially different structure than FCO: while the total
volume is only a fraction of the volume of FCO, the RoI is
much more densely occupied by tall buildings. This makes the
optimal placement problem harder, since each sensor will only
cover a small portion of the region, regardless of its position,
due to lack of line-of-sight visibility. Our 3D RoI model is a
cube with edges of length 400 m containing simplified shapes
for all the relevant buildings (modelled with 51 polyhedra).

Sensor costs are 1 (type T1, reference cost) and 1.17 (T2).
All sensors can be placed on the ground, and T2 sensors also
over the roofs and on the concrete walls of the towers, i.e., not
on the glass façades (in the latter cases with cost overheads of
5% and 10%, respectively). Sensors of type T1 (respectively,
T2) can detect targets up to 500 m (respectively, 700 m) with
quality level q0, and up to 400 m (respectively, 600 m) with
quality level q1. Sensing angle ranges for any sensor pair are
[25°, 155°] (for q0) and [30°, 150°] (for q1). All sensors have
the same FFZ (5 m) for both q0 and q1.

The high-priority portion of the RoI is composed of two
parts: the first one is a portion of a spherical shell on top of
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the buildings, constituting a sort of dome on the RoI; such
region is deemed as highly important because, in such a small
environment (densely occupied by buildings), it is crucial to
detect the arrival of an UAV as quickly as possible. The second
portion includes the area at ground-level, that is the busiest
area where people walk to enter the buildings.

Figure 1b shows an aerial view of VIC, whilst Figure 6
shows screenshots of our visualiser with our 3D model.

C. Experimental results
1) Optimisation: We ran multiple experiments for each case

study, and with various configurations, where each configu-
ration defines an overall number of sensors and the relative
numbers of T1 vs. T2 sensors. We used between 10 and 20
sensors for FCO and between 3 and 10 for VIC. Indeed,
preliminary experiments shown that higher numbers of sensors
would not bring any significant further improvement of the
coverage, while fewer sensors would simply be ineffective.

Figure 5 (up) shows the Overall Deployment Costs (ODCs)
of the best deployments found for each configuration (T1 vs.
T2 sensors). The darker a cell in the heat-maps, the better the
quality of the final deployment found for that configuration.
Numbers in cells denote the objective value (2) of the optimal
deployments found. Values in parenthesis denote the best
solution for each number of sensors. The value with a “*”
(in the darkest cell) denotes the best solution overall.

Our system achieved a final (optimal) deployment yielding,
on average across the various configurations, an expected
reduction of the ODC of 27.37% (FCO) and 26.69% (VIC),
where the expectation is computed with respect to the N
initial random generated admissible deployments (time zero).
Expected ODC reductions on the best configurations are of
31.89% (FCO) and 32.01% (VIC).

Figure 5 (down) shows, for each configuration and each
timepoint t, the objective value of the best deployment that
our system (when running on infrastructure (ii), i.e., on 640
fully reserved for the job) would have found if halted at time
t. The bold curves refer to the configurations of T1 vs. T2
sensors yielding the overall optimum, namely 13 T1 and 3
T2 sensors for FCO, and 4 T1 and 3 T2 sensors for VIC
(see Figure 5, up). The objective values for each configuration
have been normalised as percentages of the objective value of
the final deployment found for that configuration. The system
terminated in 11m45s (FCO) and 18m18s (VIC), and found
a solution whose objective value is just 10% above the final
optimum in only 34s (FCO) and 6s (VIC). An analysis of the
scalability of our parallel system on fully reserved infrastruc-
tures of various sizes is delayed to Appendix D-B. Here we
just mention that, on infrastructure (iii) (i.e., using 3200), it
would have terminated in only 3m5s (FCO) and 3m40s (VIC),
and would have found a solution whose objective value is
10% above the final optimum in only 9s (FCO) and 5s (VIC).
Conversely, on infrastructure (i) (i.e., using 64, i.e., just 1),
it would have required 2h2m36s (FCO) and 3h16m23s (VIC)
to terminate, and 2m29s (FCO) and 22s (VIC) to get to 10%
above the final optimum.

The time required by GD-Cover to estimate, via statistical
model checking, the objective value yielded by each candidate

deployment ranges within 1.8s–8.5s (FCO, 10–20 sensors)
and 2s–32s (VIC 3–10 sensors), and grows with the number
of pairs of sensors that might triangulate. The higher times
measured in VIC (which has a smaller RoI than FCO, although
with more obstacles) are indeed due to the fact that each sensor
can in principle cooperate with most of the others. Hence, the
number of pairs of sensors which might triangulate is much
higher, and determining the coverage of each sampled point
requires more effort. However, deploying GD-Cover using a
high enough number of helper processes successfully mitigates
this issue. Details are delayed to Appendix D-D. Finally,
Appendix D-C evaluates the effectiveness of launching the
parallel optimisers starting from the best initial deployments.
This step greatly helps when in presence of tight time budgets
and small computational infrastructures. Namely, for both case
studies, the first deployment within 110% of the final optimum
was achieved from a parallel NOMAD run starting from one of
the 4 best random initial deployments, and the final optimum
from one of the 20 best initial deployments (with one single
exception).

2) Computation of uncovered region in closed form: This
job is computationally way more intensive than estimating the
objective value of a candidate deployment via statistical model
checking. This is why such computation is performed only at
the end of the optimisation process, or on user demand.

We ran GD-Cover to compute the uncovered region for the
final (optimal) deployments. As explained in Section V-C, we
enabled parallel computation also for this job, by splitting
the two RoIs in different numbers of identical cells, which
were processed in parallel by the available helper processes.
A full scalability analysis for this job is delayed to Ap-
pendix D-B2. Here, we just mention that, differently from what
happens during optimisation, the geometric reasoning required
by the computation of the uncovered region is somewhat
hindered when using large infrastructures. This is unsurprising,
since processing too many small cells may yield duplication
of efforts, because some of the computed polyhedra (those
needed to represent the regions of Proposition V.1) would
span a high number of cells. The optimal splitting of each
RoI appears to be in a few thousands of cells. This yields
the computation terminate in 31m33s (FCO, 6400 cells of
size 100×100×10 m3) and 14m5s (VIC, 6498 cells of size
21×21×22 m3) on infrastructure (i) (64). By comparing these
durations with those of the statistical model checking–based
estimation of the objective value (which is also much more
suitable to be massively parallelised), we see that driving the
optimisation with such approximations is extremely beneficial.

Finally, Figure 6 shows, for each case study, the computed
positions of the sensors and the uncovered region at three
milestones of the optimisation process (when using the best
number of sensors): the initial deployment (time zero), the
first deployment whose objective value is 10% above the final
optimum, and the final (optimal) deployment. The pictures are
taken from our 3D visualiser.

VII. CONCLUSIONS

In this article we proposed a novel approach to the compu-
tation of optimal (with respect to coverage, cost-effectiveness,
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Figure 5: Up: best Overall Deployment Cost found for different numbers of T1 vs. T2 sensors (configurations). Down: Time
course of the objective value during optimisation, when fully reserving 640 (i.e., 10, infrastructure (ii) in Section VI-A5; one
line per configuration; the blue lines refer to optimal configurations).

multiple sensing quality levels, and tolerance to sensor faults)
deployments of triangulating sensors for unauthorised UAV
localisation in large, complex critical 3D regions exhibiting ob-
stacles (e.g., buildings), varying terrain elevation, portions with
different coverage priorities, and in presence of constraints on
where sensors can actually be placed. Our approach relies
on computational geometry and statistical model checking,
effectively exploiting off-the-shelf AI-based BBO solvers, and
enables the computation of a closed-form, analytical represen-
tation of the region uncovered by a sensor deployment, which
provides the means for rigorous, formal certification of the
quality of the latter. To our knowledge, no other method is
available which addresses all such aspects (see also the recap
in Appendix A).

We have demonstrated the practical feasibility of our ap-
proach by computing, in a few minutes on a small parallel
infrastructure (or a few hours on a single workstation), optimal
sensor deployments for UAV localisation in two large, complex
regions, Leonardo Da Vinci International Airport (FCO) in
Rome and Vienna International Center (VIC), using multiple
instances of the NOMAD state-of-the-art AI-based BBO solver
as the underlying optimisation engine.

Future work include the evaluation of other (e.g., derivative-
free) optimisation techniques and the improvement of GD-
Cover to further reduce its computation time.
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APPENDIX A
RELATED WORK

In Table I we compare our approach against the related work
discussed in Section II according to a number of benchmark
criteria of interest, in order to better show the position of this
article within the existing literature.

APPENDIX B
PROOF OF RESULTS

In this appendix we show the proofs of our results.

Proposition V.1 (Geometric representation of the (j, q)-
uncovered region). The (j, q)-uncovered region of Defini-
tion III.2 can be equivalently defined as:

U j,q =
⋃

F∈2S

|F |≤j

⋂
(s1,s2)∈(S−F )2

s1 ̸=s2

Uq
s1,s2 − O (7)

with

Uq
s1,s2 =

[
U range,q
s1 ∪ U range,q

s2

]
∪
[
UO,q
s1 ∪ U

O,q
s2

]
∪ U angle,q

s1,s2 (8)

where, for i ∈ [1, 2]:
• U range,q

si is the region out of range of si:

U range,q
si = {X ∈ R | dist(X,D(si)) > rsi,q} ,

i.e., the complement of a sphere of radius rsi,q centred
in the position of sensor si, D(si).

• UO,q
si is the region not covered by si because of obstacles.

It is the set of points X ∈ R such that the distance
between an obstacle (a point in O) and the straight-line
segment connecting X with D(si) is at most the First
Fresnel Zone (FFZ) radius of si for quality level q, fsi,q:

UO,q
si = proj(D(si), bloat(O, fsi,q)) ∩R.

• U angle,q
s1,s2 is the region not covered by s1 and s2 because of

excessive sensing error. It is the set of points X ∈ R such
that the angle ∠D(s1)XD(s2) formed by X with the po-
sitions of the two sensors is outside range [θmin,q, θmax,q]:

U angle,q
s1,s2 = {X ∈ R | ∠D(s1)XD(s2) ̸∈ [θmin,q, θmax,q]} .

Proof. (X ∈ (1) =⇒ X ∈ (7)) By contraposition. Take any
X ̸∈ (7). This means that either X ̸∈ R or X ∈ O (in which
cases, trivially X ̸∈ (1)), or, for all F ∈ 2S such that |F | ≤ j,
there exist two distinct sensors s1 and s2 not in F for which
X ̸∈ Uq

s1,s2 . The latter condition in turn means that all the
conditions of Definition III.1 hold, namely:

• Since X ̸∈ U range,q
si , then dist(X,D(si)) ≤ rsi,q , i ∈

[1, 2];
• Since X ̸∈ UO,q

si and X ∈ R, then
X ̸∈ proj(D(si), bloat(O, fsi,q)), which means that
dist(XD(si),O) > fsi,q , i ∈ [1, 2];

• Since X ̸∈ U angle,q
s1,s2 , then ∠D(s1)XD(s2) ∈

[θmin,q, θmax,q].
Consequently, coverq(X, s1, s2) = 1 for all such pairs of

sensors, hence coverj,q(X) = 1 (Definition III.2) and X ̸∈ (1).

(X ∈ (7) =⇒ X ∈ (1)) Again, by contraposition. Take any
X ̸∈ (1). This means that either X ̸∈ R or X ∈ O (in which
cases, trivially X ̸∈ (7)), or coverj,q(X) = 1 (Definition III.2).
The latter condition means that, for all F ∈ 2S such that
|F | ≤ j, there exist two distinct sensors s1 and s2 not in F
for which coverq(X, s1, s2) = 1. This in turn means that X
satisfies all conditions of Definition III.1. Hence:

• Since dist(X,D(si)) ≤ rsi,q , i ∈ [1, 2], then X ̸∈
U range,q
si ;

• Since dist(XD(si),O) > fsi,q , i ∈ [1, 2], then X ̸∈
proj(D(si), bloat(O, fsi,q)), which, given that X ∈ R,
means that X ̸∈ UO,q

si ;
• Since ∠D(s1)XD(s2) ∈ [θmin,q, θmax,q], then X ̸∈
U angle,q
s1,s2 .

Consequently, X ̸∈ Uq
s1,s2 .

Observation V.1. For every j ∈ [0, k], q ∈ Q, let Zj,q be
a real-valued random variable defined on probability space
(Ωj,q,F j,q,Prj,q) (Definition V.1) as: Zj,q(⊥) = 0; Zj,q(h) =
VR × w(j, q, h) (for h ∈ H).

The value of the objective function (2) evaluated for deploy-
ment D is Placem(D)+

∑k
j=0

∑
q∈Q E(Zj,q), where Ej,q(Z)

is the expected value of Zj,q .

Proof. Let VR = volume(R) (see Definition V.1). For all i ∈
[0, k], q ∈ Q, we have:

E(Zj,q) =
∑
h∈H

(
̸ VR × w(j, q, h)× volume(U j,q ∩Rh)

̸ VR

)
.

By expanding (4) in (2) we have:

Placem(D) + Uncov(D) =
Placem(D) +

∑k
j=0

∑
q∈Q

∑
h∈H w(j, q, h)× volume(U j,q ∩Rh) =

Placem(D) +
∑k

j=0

∑
q∈Q E(Zj,q).

APPENDIX C
PSEUDO-CODE OF GD-COVER

Here we give more details as well pseudo-code of our
implementation of key components of Geometry-based Sensor
Deployment Coverage Analyser (GD-Cover), our black box,
namely the data structure implementing Axis-Aligned Bound-
ing Box (AABB) tree–based indexed unions of polyhedra
(Appendix C-A) and the function which computes polynomial
approximations of the uncovered region (Section C-B).

A. Indexed unions of polyhedra

Algorithm 1 defines our data structure implementing AABB
tree–based Indexed Unions of Polyedra (iUoPs), using the
algorithm from [24]. The data structure provides operations
to create an iUoP, compute the intersection and the union
of a collection of iUoPs, and the difference between two
iUoPs. Function simplify() heuristically merges together two
polyhedra in a iUoPs whose union is a polyhedron until a
fix-point is reached.
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Table I: Comparison of our method against the other approaches discussed in Section II of the main article, over a set of
benchmarking criteria.
Note: references in the table are numbered according to the References section of this (separate) supplementary material, and
do not follow the numbering of references of the main article.
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/* Instances of data structure iUoP define Indexed
Unions of Polyedra, i.e., unions of polyhedra
together with a spatial AABB tree index. iUoPs
support efficient index-based intersection, union and
difference operations. */

1 data structure iUoP
2 field polys, collection of closed convex polyhedra;
3 field index, AABB tree; /* The leaves of the tree are

the polyhedra in polys */

4 function iUoP _create(polys)
5 input polys, a collection of closed convex polyhedra;
6 output a new iUoP;
7 index← build the AABB tree index using the

minimum surface heuristics from [24];
8 return iUoP(polys, index);

9 function iUoP _intersect(A, B)
10 input A, B, two iUoPs;
11 output a new iUoP representing A ∩B;
12 polys← compute A.index∩B.index using the AABB

tree intersection algorithm from [24]; returns a set
of polyhedra;

13 polys← simplify(polys);
14 return iUoP _create(polys);

15 function iUoP _union(L)
16 input L, a collection of iUoPs;
17 output a new iUoP representing

⋃
u∈L u;

18 polys← set of all polyhedra in all iUoPs of L;
19 polys← simplify(polys);
20 return iUoP _create(polys);

21 function iUoP _diff(A, B)
22 input A, B, two iUoPs;
23 output a new iUoP representing A \B;
24 polys← compute A \B from A.index and B.index

using the AABB tree intersection algorithm from
[24] and complement; returns a set of polyhedra;

25 polys← simplify(polys);
26 return iUoP _create(polys);

Algorithm 1: Data structure implementing AABB tree–
based indexed unions of polyhedra.

B. Computing polyhedral approximations of the uncovered
region

Algorithm 2 shows pseudo-code of the GD-Cover function
which computes a polyhedral over-approximation ⌈U j,q⌉ of the
region (j, q)-uncovered by the given sensor deployment D (the
algorithm which computes a polyhedral under-approximation
is similar).

Algorithm 2 is split into three phases. The first (sequential
and quick) phase, just computes once and for all the unordered
pairs of distinct sensors that are close enough to possibly
interact with each other.

The second phase computes, in parallel exploiting the avail-
able helper processes, for all pairs (s1, s2) of such sensors,
the region (j, q)-uncovered by them (Us1,s2 ) and the region
in the range of both of them (Rs1,s2 ). This is done by run-

ning function process_sensor_pair(s1, s2, q), described below,
which computes (with the aid of the indexed data structure
shown in Algorithm 1) the regions defined in Proposition V.1
of the main article. Such regions are broadcasted to all helper
processes once and for all.

Finally, the third phase of the algorithm computes, again in
parallel on the available helper processes, the portion ⌈U j,q

c ⌉
of each cell c ∈ [1,m] (j, q)-uncovered by the input sensor
deployment D.

Function process_sensor_pair(): For every unordered pair
of sensors (s1, s2) that are close enough to possibly interact
with each other, function process_sensor_pair(s1, s2, q) com-
putes (with the aid of the indexed data structure shown in
Algorithm 1) polyhedral under-/over-approximations of the
regions defined in Proposition V.1 of the main article, i.e.,
U range,q
si , UO,q

si (i ∈ {1, 2}), and U angle,q
s1,s2 . Every region is under-

/over-approximated with a maximum tolerance of ρ ∈ R+, a
user parameter.

Here we briefly outline how this function behaves.
A core sub-problem when computing polyhedral under-

/over-approximations of each of the required regions is com-
puting a polyhedral under-/over-approximation of a sphere.
Given a sphere S having radius r, a polyhedral under- (re-
spectively over-) approximation ⌊S⌋ (respectively ⌈S⌉) of S
with tolerance ρ can be computed as a geodesic polyhedron
inscribed in S (respectively circumscribing S). The number
of vertices of such (regular) polyhedra can be derived from
the radius of S and the required tolerance ρ using standard
geometry arguments. The reader is referred to, e.g., [25], [26]
for details.

Now, as for the regions of Proposition V.1:

a) Region U range,q
si : This is the complement of a sphere

S of radius rsi,q centred in D(si).
Thus, ⌊U range,q

s1 ⌋ and ⌈U range,q
s1 ⌉ are respectively computed

as R − ⌈S⌉ and R − ⌊S⌋. As explained in the main paper,
although the difference between two unions of polyhedra is a
union of non-closed polyhedra, we can safely convert it into
a union of closed polyhedra, given that tolerance ρ is strictly
positive.

b) Region UO,q
si : This is the intersection of R with the

projection of point D(si) onto bloat(O, fsi,q).
A fsi,q-bloating of a union of polyhedra O can be obtained

as the union of fsi,q-bloatings of each polyhedron O ∈ O.
Also, the projection of point X onto a union of regions is the
union of projections of X onto each such region. Thus, the
core problems to be solved here are how to compute poly-
hedral under- and over-approximation of a fsi,q-bloating of a
single polyhedron. How to compute projections is described
elsewhere [27].

It is immediate to see that a possible fsi,q-bloating of a
polyhedron O can be simply defined as:

bloat(O, fsi,q) = conv(O ∪ {Sv | v is a vertex of O}) (9)

where Sv is the sphere centred in v having radius fsi,q and
conv(R) is the convex-hull of region R (see Figure 7 for an
example in 2D). Note that the computed convex-hull is not
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1 function poly_over(D, j, q)
2 param R, Region of Interest;
3 param cells(R), a iUoP defining a cell-wise

partitioning of RoI (for parallel computation);
4 param H, priorities;
5 param O, obstacles;
6 param S, sensors and their properties;
7 input D, a deployment of sensors in S;
8 input j, max n. of sensor faults;
9 input q, sensing quality level;

10 output ⌈U j,q⌉, polyhedral over-approximation of the
region (j, q)-uncovered by D;

/* Phase 1, initialise maps:
• sensor_pairs, pairs of sensors close enough to possibly

interact with each other at quality level q
• sensor_pairs_U[sensor pair], region (as iUoP)

uncovered by ‘sensor pair’ for quality level q
• sensor_pairs_R[sensor pair], region (as iUoP) within the

reach of both sensors or ‘sensor pair’ for q

*/
11 sensor_pairs← unord’d pairs of distinct sensors

{s1, s2} s.t. dist(D(s1),D(s2)) < rs1,q + rs2,q;
12 sensor_pairs_U← empty map;
13 sensor_pairs_R← empty map;

/* Phase 2 */
14 parallel foreach {s1, s2} ∈ sensor_pairs do

/* parallel computation on helper processes via the
centralised task dispatcher */

15 (Us1,s2 ,Rs1,s2)← process_sensor_pair(s1, s2, q);
16 if R ⊆ Us1,s2 then
17 remove {s1, s2} from sensor_pairs;
18 else
19 sensor_pairs_U[{s1, s2}]← Us1,s2 ;
20 sensor_pairs_R[{s1, s2}]← Rs1,s2 ;

21 send sensor_pairs, sensor_pairs_U, sensor_pairs_R to
helper processes;

/* Phase 3 */
22 ⌈U j,q⌉ ← empty set of polyhedra;
23 parallel foreach c ∈ cells(R) do

/* parallel computation on helper processes via the
centralised task dispatcher */

24 ⌈U j,q
c ⌉ ← poly_over_in_cell(c, j, q);

25 ⌈U j,q⌉ ← iUoP _union(⌈U j,q⌉, ⌈U j,q
c ⌉);

26 return ⌈U j,q⌉;
Algorithm 2: Computation of polyhedral over-
approximation ⌈U j,q⌉ of the (j, q)-uncovered region.

1 function poly_over_in_cell(D, c, j, q)
2 global sensor_pairs;
3 global sensor_pairs_U;
4 global sensor_pairs_R;
5 param S, sensors and their properties;
6 param R, Region of Interest;
7 input D, a deployment of sensors in S;
8 input c, a cell of R;
9 input j, max n. of sensor faults;

10 input q, sensing quality level;

11 foreach F ∈ 2S s.t. |F | = j do
12 sensors_pairs_c← {{s1, s2} ∈ sensor_pairs |

s1 ̸∈ F, s2 ̸∈ F,
iUoP _intersect(c, sensor_pairs_R[{s1, s2}]) ̸= ∅};

/* Compute ⌈U j,q
c,F ⌉, the region (iUoP) uncovered by

all pairs of sensors not in F */
13 ⌈U j,q

c,F ⌉ ← c;
14 foreach {s1, s2} ∈ sensors_pairs_c do
15 ⌈U j,q

c,F ⌉ ← iUoP _intersect(⌈U j,q
c,F ⌉,

sensor_pairs_U[{s1, s2}]);
16 if ⌈U j,q

c,F ⌉ = ∅ then break;
17 ⌈U j,q

c ⌉ ← iUoP _union(⌈U j,q
c ⌉, ⌈U

j,q
c,F ⌉);

18 if ⌈U j,q
c ⌉ = c then

19 break ; /* no need to consider other F s */
20 return ⌈U j,q

c ⌉;
Algorithm 3: Computation of polyhedral over-
approximation of the (j, q)-uncovered region in cell
c (helper process).

fsi,q

Figure 7: fsi,q-bloating of a polyhedron O (2D, in black) as
defined in (9).

a polyhedron, because of the presence of residual portions of
the spheres Sv outside O.

A polyhedral under- (respectively over-) approximation of
bloat(O, fsi,q) (with tolerance ρ) can thus be computed as the
convex-hull of the union of O and ⌊Sv⌋ (respectively ⌈Sv⌉)
for every vertex v of O (where the polyhedral under- and over-
approximations of the spheres are computed with tolerance ρ).

c) Region U angle,q
s1,s2 : This is the set of points X ∈ R such

that the angle ∠D(s1)XD(s2) formed by X with the positions
of the two sensors is outside range [θmin,q, θmax,q] and can be
defined as the union of two regions:

a) {X ∈ R | ∠D(s1)XD(s2) < θmin} and
b) {X ∈ R | ∠D(s1)XD(s2) > θmax}.
Region a) can be computed as follows. Consider the seg-

ment D(s1)D(s1) connecting s1 and s2, any plane π contain-
ing D(s1)D(s1), and the locus of points X ∈ π such that
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θmin ≤ ∠D(s1)XD(s2). From classical results in geometry,
the latter is a segment σ of a circle having D(s1)D(s1)
as a chord (the white area in Figure 8a). Region a) is the
complement of the solid of revolution obtained by rotating σ
around D(s1)D(s2), as shown in Figure 8a. The region can
be both under- and over-approximated (with tolerance ρ) as a
union of polyhedra with similar methods as above.

Conversely, region b) can be computed by considering the
circular segment defined by the locus of points X ∈ π (with
π being any plane containing D(s1)D(s1)) such that θmax ≤
∠D(s1)XD(s2) (the grey area in Figure 8b). Region b) is the
solid of revolution obtained by rotating such a circular segment
around D(s1)D(s2). Also this region can be both under- and
over-approximated (with tolerance ρ) as a union of polyhedra
with similar methods.

APPENDIX D
EXPERIMENTS

Here we give more details on our experimental setting and
on our experimental results.

A. Experimental setting

1) Running experiments on parallel infrastructures of var-
ious sizes: A direct way of performing a throughout analysis
of the performance of our system, also considering parallel
infrastructures of various sizes, would have required us to run
all our experiments (i.e., for each of our case studies, for all
combinations of T1/T2 sensors and all combinations for n
and n1) multiple times, once for each candidate infrastructure.
Each time, we would have needed to fully reserve the requested
number of nodes exclusively to our job.

Such a direct approach would have been unviable, given that
we were using a computational cluster shared among a high
number of competing processes, because of the implemented
jobs scheduling policies.

Hence, we proceeded in an indirect way. Namely, we ran
our experiments asynchronously, using the meta-scheduler
provided by the cluster in use (DAGMAN, https://htcondor.
org/dagman/dagman.html). This means that each iteration of
each process of Figure 3 of the main article (the Orchestrator,
each of the n1 Black-Box Optimisation, BBO, solvers, the GD-
Cover tasks dispatcher, and each of the n2 GD-Cover helpers)
were run independently. Here, the term iteration refers to the
time-span of a process starting from the reception of a message
requesting a computation, and terminating with the sending
back of the result of the requested computation.

Exchange of network messages were replaced by the send-
ing process writing files in shared storage and the receiving
process reading them back, and running times of all process
iterations were precisely measured (excluding the I/O time due
to file operations) and stored in log files. The time that would
have been required for the exchange of real network messages
for each needed type and payload size was measured through
an independent experiment, by running a mock-up software
implemented on top of OpenMPI (https://www.open-mpi.org),
which exchanges a high number of messages of the required

types and payload sizes (100000 messages for each type and
each payload size), and computes the average half turnaround
time for each of them.

Building on the generated log files containing the comple-
tion time and maximum memory occupation of each process
iteration and the average network time for each envisioned
message, we reconstructed what would have been the com-
pletion time of our system under the assumption that it were
when launched on a fully reserved infrastructure of any given
number of nodes (with nodes being identical to those of our
cluster). This effectively emulates what would have happened
in a computational infrastructure fully devoted to run our
system.

Despite the fact that the completion times estimated in this
way might be subject to (slight) approximations, results below
on the scalability of our software under different business
scenarios show speed-ups so substantial (from hours to a few
minutes) that can easily incorporate any reasonable estimation
error.

2) Objective function weights: Table II shows the values
we used in our experiments for the weights w(j, q, h) of the
objective function in our two case studies: Leonardo Da Vinci
International Airport (FCO) and Vienna International Center
(VIC). They were estimated by preliminary experiments with
the goal to achieve the best overall deployment using sensors
of both types.

Note that, as for FCO, we set to 0 the weights representing
the cost of not covering a unit of volume of the low priority
region under j = 1 sensor fault. This is reasonable, given that
the low priority region for that case study is extremely large
(as it includes the airport runways).

B. Scalability analysis of the parallel system

Here we perform a deeper analysis of the scalability of our
parallel system to search for an optimal sensor deployment
and to compute a closed-form polyhedral representation of the
region uncovered by the latter.

1) Optimisation: Figures 9 and 10 show, for each case
study and for different values for n (total computational nodes)
and n1 (parallel optimisers), a figure similar to Figure 5
(down), that is, the time course of the objective value (nor-
malised with respect to the value of the final optimum) of
the best deployment found at time t. For each value of n,
the boxed cell denotes the number of parallel optimisers (n1)
which yield maximum efficiency with respect to the sequential
algorithm (conventionally defined as n = n1 = 1, with neither
orchestrator nor a dispatcher process).

It can be seen that, for both case studies, running our system
on a single workstation (n = 64) allows it to terminate within
a few hours. Completion time can be reduced to just a few
minutes when deploying our system to a larger infrastructure
(n = 3200, i.e., 50 64-core machines), with efficiency of 72%
(FCO) and 91% (VIC), noticeably higher in the latter more
complex scenario.

Clearly, the completion times estimated above, computed
as described in Appendix D-A1, might be subject to approxi-
mations. However, beyond being the only technically viable
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D(s1) D(s2)

X

θmin

(a) {X ∈ R | ∠D(s1)XD(s2) < θmin} (grey part, complement
of solid of revolution)

D(s1) D(s2)

X

θmax

(b) {X ∈ R | ∠D(s1)XD(s2) > θmax} (grey part, solid of rev-
olution)

Figure 8: Computation of region U angle,q
s1,s2 .

faults (j) quality (q) priority (h) w(j, q, h)

0 q0 low 10
0 q0 high 15
0 q1 low 15
0 q1 high 20
1 q0 low 0
1 q0 high 1
1 q1 low 0
1 q1 high 1

FCO

faults (j) quality (q) priority (h) w(j, q, h)

0 q0 low 5
0 q0 high 7
1 q0 low 5
1 q0 high 7
0 q1 low 0.5
0 q1 high 1
1 q1 low 1
1 q1 high 2

VIC

Table II: Values for weights w(j, q, h) of the objective function used in our experiments.

solution applicable to the cluster at our disposal, they are
accurate enough for our goal, i.e., to give full evidence of the
scalability of our software under different business scenarios,
and in particular, that the computation can be easily sped-up
from hours (on a single workstation) to just a few minutes
using a small parallel infrastructure.

2) Computation of the uncovered region: Figure 11 shows
the time required by GD-Cover to compute the closed-form
polyhedral representation of the region uncovered by the
best deployment found (under no sensor faults), for varying
numbers of identical cells in which the RoI is split and for
varying numbers of computational nodes.

It can be observed that, differently from what happens dur-
ing optimisation, the geometric (symbolic) reasoning required
by the computation of the uncovered region is somewhat
hindered when using large infrastructures. This is unsurprising,
since two different phenomena occur when parallelising this
computation on a large number of nodes, and both of them
obstruct such a large parallelisation:

(i) The processing time of each cell is largely variable.
Namely, for those cells completely covered or completely
uncovered by the deployment, the computation is very
fast, while for those cells only partially covered, the
computation is way more complex. This implies that, in
order to achieve a good load balancing, the RoI must be

split in a number of cells much higher than the number
of available nodes.

(ii) With a higher number of (smaller) cells, greater duplica-
tion of efforts arises. This is because the probability that
polyhedra to be computed (those needed to represent the
regions of Proposition V.1) span a higher number of cells
increases. Such polyhedra need to be computed for each
cell they intersect.

C. Effectiveness of sorting random initial deployments

Here we show that sorting the N = 100 initial random
sensor deployments in descending order of their quality is a
very effective heuristics for this problem, and greatly helps
when in presence of tight time budgets and small computa-
tional infrastructures which would force us to use a number
of parallel optimisers (n1) much smaller than N . In particular,
Figure 12 shows, for each case study, the distribution, among
all configurations for that case study (i.e., for all numbers
of T1 and T2 sensors) of the number i ∈ [1, N ] of the
initial random deployment (after sorting) which yielded, in
the shortest time, a deployment within any given percentage of
the final optimum. Interestingly, for both case studies, the first
deployment within 120% of the final optimum was achieved
from the parallel NOMAD run starting from the best random
initial deployment; the first deployment within 110% of the
final optimum was achieved from a parallel NOMAD run

http://doi.org/10.1109/TSMC.2023.3327432


This article appears in IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2023.3327432 20

Pa
ra

lle
l

op
tim

is
er

s
(n

1
)

Total computational nodes (n)
1 64 640 3200

1

5

10

20

50

100

Figure 9: Leonardo Da Vinci International Airport (FCO): Time course of the (normalised) objective value of the best
deployment found during optimisation, for varying numbers of parallel optimisers (rows) and overall computational nodes
(columns).
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Figure 10: Vienna International Center (VIC): Time course of the (normalised) objective value of the best deployment found
during optimisation, for varying numbers of parallel optimisers (rows) and overall computational nodes (columns).
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Figure 11: Time (log-scale) to compute the uncovered region in closed form for varying numbers of identical cells in which
the RoI is split and for varying numbers of computational nodes.

starting from one of the 4 best random initial deployments, and
the final optimum was first computed from a parallel NOMAD
run starting from one of the 20 best random initial deployments
(with one single exception). This means that we could have
safely removed, respectively, 99, 96 and 80 out of the N = 100
initial deployments from the sorted list and still get the same
deployments within 120%, 110%, 100% of the final optimum
(with one exception). Such computations would have been
made much faster on the same computational infrastructure
or, alternatively, would have been feasible in comparable time
on a much smaller (hence, much cheaper) infrastructure.

D. Performance of the statistical model checking–based eval-
uation of a candidate deployment

Figure 13 shows, for each case study, the average time
required by GD-Cover to estimate, via statistical model check-
ing, the objective value yielded by a candidate deployment, for
each number of sensors.

The difference between the two case studies is due to
intrinsic characteristics of the RoIs themselves. In fact, in
FCO, GD-Cover running times are positively influenced by
the fact that sensors are spread across a large space and each
sensor has hope to cooperate only with few other sensors.
This benefits GD-Cover when determining whether a point
is covered by at least a pair of sensors. Conversely, in VIC
(which has a smaller RoI, although with more obstacles), each
sensor can in principle cooperate with most of the others.
Hence, the number of pairs of sensors which might triangulate
is higher, and determining the coverage of each sampled

point requires more effort. Deploying GD-Cover using a high
enough number of helpers successfully mitigates this issue.

APPENDIX E
UNCOVERED REGION 3D VISUALISER

Here we briefly showcase the proof-of-concept web appli-
cation we developed for the 3D visualisation and interactive
exploration of the regions uncovered by a sensor deployment.

The visualiser runs in any browser and has been realised
with the Three.js Javascript framework.

Users of the application are initially prompted to upload one
or more of the following inputs (in JSON format):

1) definition of the RoI, including a partition thereof in
priority regions, obstacles, and the region where sensors
can be deployed

2) a sensor deployment
3) the region not covered by the sensor deployment
4) the region not covered by each pair of cooperating

deployed sensors.
All regions are given as unions of convex polyhedra. Since

each input to the visualiser is either an input or an output of
GD-Cover, all such data can be immediately obtained from
GD-Cover itself, by instructing it to dump the requested data
into one or more JSON files.

For reviewing purposes, a demo version of the application
(already fed with the optimal deployments for our two case
studies shown in Section VI-C) has been deployed at:

https://mclabservices.di.uniroma1.it/antidrone-visualizer/
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Figure 12: Distribution, among all experiments of each case study, of the number i ∈ [1, N ] of the initial random deployment
(after sorting from the best to the worst) which yielded, in the shortest time, a deployment within any given percentage of the
final optimum (minimum ODC).
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Figure 13: Average (plus min, max) time required by GD-Cover to estimate, via statistical model checking, the objective value
yielded by a candidate deployment, for each number of sensors.
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Figure 6 in the main article shows our two case studies,
FCO and VIC, as visualised in the web application.

The user can see the region where sensors can be placed by
pressing the “Admissible Placement Region” button in the side
menu. Figure 14 shows the admissible placement region of T2
sensors in VIC. It can be seen that sensors can be deployed
on poles on the ground (at a height of up to 15 m), over some
of the roofs and on the concrete walls of the towers (on poles
of length 5–10 m), but not on the glass façades.

Figure 15 shows the region with high coverage priority in
FCO, which includes the runways and the areas around them.
Users can enable and disable the visualisation of the region at
each level X of priority by pressing the “Region with Priority
X” buttons in the side menu.

By selecting a pair of sensors via the “Sensors” drop-down
menu, the user can see the region not covered by a specific
pair of sensors. As an example, Figure 16 shows a detail of
the region not covered by a specific pair of sensors (number
13 and 12) in FCO. The figure clearly highlights the portions
of the RoI not covered by that pair of sensors due to each
condition of Definition III.1 and Proposition V.1 in the main
article (graphically shown in Figure 4 of the main article),
namely: range of sensors, presence of obstacles, unsatisfactory
sensing angle. Note that, being the left sensor placed at 14 m
of height and the building closest to it is only 10 m high, the
whole resulting projection intercepts the ground within a finite
distance. By navigating the uncovered region in 3D, the user
can easily assess the contribution of each pair of sensors to
the coverage of the RoI.

Figure 17 displays, in its entirety, the region of VIC uncov-
ered by the 4 T1 (cyan) and 3 T2 sensors (yellow) deployed
as shown.

Finally, Figure 18 shows how our visualiser may be also
employed to perform other kinds of what-if analyses on a
computed deployment of sensors. As an example, we could be
interested to see what would be the uncovered region if certain,
specific sensors actually experience a fault. In particular, the
figure shows the FCO and VIC regions that would remain
uncovered by the respective optimal deployments of sensors
(those shown in Figure 6 of the main article), in case the
occurring sensor fault is such to maximise the ODC (worst
case).
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Figure 14: Admissible region of T2 sensors in VIC.

Figure 15: High-priority region in FCO.
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Figure 16: Details of the region not covered by sensors 13 and 12 in FCO.

Figure 17: Uncovered region in VIC, seen from the above.
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FCO VIC

Figure 18: Regions uncovered by the optimal deployment in the worst case.
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