
An empirical study of QBF encodings:
from treewidth to useful preprocessing

Luca Pulina and Armando Tacchella

DIST, Università di Genova, Viale Causa, 13 – 16145 Genova, Italy
{Luca.Pulina | Armando.Tacchella}@unige.it

Abstract

Theoretical studies show that in some combinatorial problems, including sat-
isfiability for quantified Boolean formulas (QBFs), there is a close relation-
ship between classes of tractable instances and the treewidth of graphs de-
scribing their structure. In this paper 1 we investigate the practical relevance
of such results for problems encoded as QBFs. We show that (an approxi-
mation of) treewidth is a predictor of empirical hardness, and that it is the
only parameter among several other candidates which succeeds consistently
in being so. We also provide evidence that QBF solvers benefit from a pre-
processing phase geared towards reducing the treewidth of their input, and
that this phase is a potential enabler for the solution of hard QBF encodings.

1 Introduction
Several theoretical studies deal with the relationship between the complexity of
combinatorial problems and the treewidth (tw) of graphs representing their struc-
ture. The common trait of such studies is that the assumption of bounded values
of tw yields tractable classes of problems which are intractable otherwise. This
connection has been unveiled in the study of graph algorithms, and it emerged in
other areas of application (see, e.g. [1]). In the context of the constraint satisfac-
tion problem (CSP) the connection was first explored by Freuder [2], Dechter and
Pearl [3], while more recent results (see, e.g., [4, 5, 6]) consider also the quantified
constraint satisfaction problem (QCSP).

In this paper we are concerned with the practical relevance of the above results
for problems that can be encoded as quantified Boolean formulas (QBFs). The
satisfiability problem for QBFs (QSAT) is the subclass of the QCSP wherein all the
variables range over a fixed Boolean domain. The importance of QSAT stems both
from theoretical aspects – QSAT is the prototypical PSPACE-complete problem [7]
– and from the fact that QBFs can provide compact Boolean encodings in several
automated reasoning tasks, (see [8] for a comprehensive listing of domains and
references). The interest in QSAT is also witnessed by a number of QBF encodings
and solvers (see [8]), and by the presence of an annual competition of QBF solvers
(QBFEVAL) [9].

From a practical standpoint, we see the results in [4, 5, 6] as gateways to the
efficient solution of QBF encodings – many of which are also industrially relevant.

1Most of the results herein presented are also detailed in a paper accepted for the 15th Interna-
tional Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR’08).

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

In particular, we build on [4] which relates the complexity of solving QCSPs to
a generalization of tw that we call quantified treewidth (twp). Our main contri-
butions, obtained considering data from the three most recent QBFEVAL events
(2006-2008), are the following:

• Since computing tw is an NP-complete problem [10] it is not difficult to
see that twp must be NP-hard at least; however, it turns out that twp can
be approximated efficiently enough; to this purpose we introduce the proof-
of-concept tool QUTE, a Quantifed Treewidth Estimator, to compute upper
bounds of twp.
• While bounding twp is only a sufficient condition for tractability and we have

no clue whether increasing it will correspond to an increase in difficulty, we
show that the approximation of twp computed by QUTE is a robust predic-
tor – albeit in a statistical sense – of the performances exhibited by solvers
when coping with QBF encodings; in this sense, the approximation of twp

is a marker of empirical hardness, and it is the only parameter that succeeds
consistently in being so among several other syntactic parameters which are
plausible candidates.
• The result in [4] relates to a specific algorithm and it does not say much

about QBF solvers using different approaches like search (see, e.g., [11, 12]),
skolemization (see, e.g., [13]), or variable elimination (see, e.g., [14, 15]);2

however, our experimental analysis shows that the significance of approxi-
mated twp is not related to some specific solver only.
• Finally, computing approximations of twp is useful; to show this we intro-

duce QUBIS, a Quantified Boolean formula Incomplete Solver. QUBIS is
incomplete in that, given an input QBF ϕ, it may either solve ϕ, or halt
producing an equi-satisfiable QBF ϕ′ whose treewidth is no larger than the
treewidth of ϕ in most cases. Experiments with QUBIS show that prepro-
cessing helps when it decreases the treewidth of QBFs, and the improve-
ment can be so dramatic that formulas which cannot be solved by any solver
(within the alloted time) before QUBIS preprocessing, can be solved after-
wards.

The paper is structured as follows. In Section 2 we introduce basic definitions.
In Section 3 we introduce the concept of empirical hardness and we show that
the approximation of twp provided by QUTE is a marker of solver performances.
In Section 4 we describe QUBIS in some detail, and show that it can effectively
improve the performances of state-of-the-art QBF solvers. We conclude the paper
in Section 5 with a summary about our current results and the related work.

2As shown in [16], the performances of Boolean satisfiability solvers based on variable elimi-
nation are very sensitive to different values of tw. As we confirm in Section 4, QBF solvers based
on variable elimination are those that are most sensitive to twp and thus most closely resemble an
implementation of the algorithm used in [4].

2

2 Preliminaries
In this section we consider the definition of QBFs and their satisfiability as given
in the literature of QBF decision procedures (see, e.g., [11, 13, 14]), and we intro-
duce notation from [4] to define graphs and associated parameters describing the
structure of QBFs.

A variable is an element of a set P of propositional letters and a literal is a
variable or the negation thereof. We denote with |l| the variable occurring in the
literal l, and with l the complement of l, i.e., ¬l if l is a variable and |l| otherwise. A
literal is positive if |l| = l and negative otherwise. A clause C is an n-ary (n ≥ 0)
disjunction of literals such that, for any two distinct disjuncts l, l′ in C, it is not
the case that |l| = |l′|. A propositional formula is a k-ary (k ≥ 0) conjunction of
clauses. A quantified Boolean formula is an expression of the form

Q1z1 . . . QnznΦ (1)

where, for each 1 ≤ i ≤ n, zi is a variable, Qi is either an existential quantifier
Qi = ∃ or a universal oneQi = ∀, and Φ is a propositional formula in the variables
{z1, . . . , zn}. The expressionQ1z1 . . . Qnzn is the prefix and Φ is the matrix of (1).
A literal l is existential if |l| = zi for some 1 ≤ i ≤ n and ∃zi belongs to the prefix
of (1), and it is universal otherwise. For example, the following expression is a
QBF:

∀y1∃x1∀y2∃x2∃x3((y1 ∨ y2 ∨ x2) ∧ (y1 ∨ ¬y2 ∨ ¬x2 ∨ ¬x3)∧
(y1 ∨ ¬x2 ∨ x3) ∧ (¬y1 ∨ x1 ∨ x3)∧
(¬y1 ∨ y2 ∨ x2) ∧ (¬y1 ∨ y2 ∨ ¬x2)∧
(¬y1 ∨ ¬x1 ∨ ¬y2 ∨ ¬x3)∧
(¬x2 ∨ ¬x3)).

(2)

The semantics of a QBF ϕ can be defined recursively as follows. A QBF clause
is contradictory exactly when it does not contain existential literals. If the matrix
of ϕ contains a contradictory clause then ϕ is false. If the matrix of ϕ has no
conjuncts then ϕ is true. If ϕ = Qzψ is a QBF and l is a literal, we define ϕl

as the QBF obtained from ψ by removing all the conjuncts in which l occurs and
removing l from the others. Then we have two cases. If ϕ is ∃zψ, then ϕ is true
exactly when ϕz or ϕ¬z are true. If ϕ is ∀zψ, then ϕ is true exactly when ϕz

and ϕ¬z are true. The QBF satisfiability problem (QSAT) is to decide whether a
given formula is true or false. It is easy to see that if ϕ is a QBF without universal
quantifiers, solving QSAT is the same as solving propositional satisfiability (SAT).

A relational signature σ is a finite set of relation symbols, each of which has
an associated arity. A (finite) relational structure A over σ consists of a universe
A and a relation RA over A for each relation symbol R of σ, such that the arity of
RA matches the arity associated to R. Accordingly, the QBF (2) can be rewritten

3

as:
∀y1∃x1∀y2∃x2∃x3(C000(y1, y2, x2) ∧ C0111(y1, y2, x2, x3)∧

C010(y1, x2, x3) ∧ C100(y1, x1, x3)∧
C100(y1, y2, x2) ∧ C101(y1, y2, x2)∧
C1111(y1, x1, y2, x3) ∧ C11(x2, x3))

(3)

over the signature σ = {C000, C0111, C010, C100, C101, C1111, C11} where each
Cw ∈ σ has arity |w|. Let φ be the expression (3). The QSAT problem for φ can
be restated as the problem of checking the (first-order logic) entailment B |= φ,
where B is a relational structure with signature σ and universe B = {0, 1}, such
that, for each Cw ∈ σ, CB

w is the relation containing all |w|-tuples over B except
w, e.g., CB

11 = {(0, 0), (0, 1), (1, 0)}.
Following [4] we further introduce the notion of quantified relational structure

as a pair (p,A) where A is a relational structure and p is a prefix, i.e., an expres-
sion of the form Q1z1 . . . Qnzn where each Qi is either ∃ or ∀, and z1, . . . , zn
are exactly the elements of the universe of A. The quantified relational structure
(p,A) associated to a QBF φ is obtained by letting p be the prefix of φ and letting
RA contain all tuples (a1, . . . , ak) such that R(a1, . . . , ak) appears as a conjunct
in φ. Notice that a prefix p = Q1z1 . . . Qnzn can be viewed as the concatenation
of quantifier blocks where quantifiers in each block are the same, and consecutive
blocks have different quantifiers. If h ≤ n is the number of blocks in p, then h− 1
is the alternation depth of p and, by extension, of the QBF having p as a prefix. If
p consists of the blocks Q1Z1 . . . QhZh, then to each variable z we can associate
a level l(z) which is the index of the corresponding block, i.e., l(z) = i for all
the variables z ∈ Zi. We also say that variable z comes after a variable v in p if
l(z) ≥ l(v). For instance, the quantified relational structure associated to (3) is
(∀y1∃x1∀y2∃x2∃x3,A), with universe A = {y1, y2, x1, x2, x3} and

CA
000 = {C000(y1, y2, x2)} CA

0111 = {C0111(y1, y2, x2, x3)}
CA

010 = {C010(y1, x2, x3)} CA
100 = {C100(y1, x1, x3), C100(y1, y2, x2)}

CA
1111 = {C1111(y1, x1, y2, x3)} CA

11 = {C11(x2, x3)}.
(4)

A relational structure – and thus the structure of a QBF – can be described
by a Gaifman graph. Given a relational structure A, the Gaifman graph of A is
the graph with vertex set equal to the universe A of A and with an edge (a, a′)
for every pair of different elements a, a′ ∈ A that occur together in some A-
tuple, i.e., in some element of RA for some relation symbol R. A scheme for a
quantified relational structure (p,A) is a supergraph (A,E) of the Gaifman graph
of A along with and ordering a1, . . . , an of the elements of A such that (i) the
ordering a1, . . . , an preserves the order of p, i.e., if i < j then aj comes after ai in
p, and (ii) for any ak, its lower numbered neighbors form a clique, that is, for all
k, if i < k, j < k, (ai, ak) ∈ E and (aj , ak) ∈ E, then (ai, aj) ∈ E.

The width wp of a scheme is the maximum, over all vertices ak, of the size
of the set {i : i < k, (ai, ak) ∈ E}, i.e., the set containing all lower numbered
neighbors of ak. The treewidth twp of a quantified relational structure (p,A) is the

4

minimum width over all schemes for (p,A). Given the correspondence between
relational structures and QBFs, we write twp(ϕ) to denote the treewidth of the
QBF ϕ.

3 Treewidth and empirical hardness
If we define the class QSAT[twp < k] as the restriction of the QSAT problem to
all instances ((p,A),B) where (p,A) has quantified treewidth strictly less than
k, then considering the definition of the polynomial-time algorithm k-consistency
of [4] we can state the following:

Theorem 1 ([4]). For all k ≥ 2, establishing k-consistency is a decision procedure
for QSAT[twp < k]

From the above, it immediately follows that the class QSAT[twp < k] is a
tractable subclass of the QSAT problem and, therefore, the QBFs corresponding to
relational structures with a bounded twp are a tractable subclass of QSAT.

To understand the implications of Theorem 3 in the case of concrete QBF en-
codings and solvers, we define a notion of empirical hardness. Given a set of QBFs
Γ, a set of QBF solvers Σ, and an implementation platform Π, we define hardness
as a partial function HΓ,Σ,Π : Γ→ {0, 1} such that HΓ,Σ,Π(ϕ) = 1 iff no solver in
Σ can solve ϕ on Π; and HΓ,Σ,Π(ϕ) = 0 iff all solvers in Σ can solve ϕ on Π. The
parameters Γ and Σ take into account the dependency of H from the current state
of the art in the available QBF encodings and solvers. The parameter Π denotes
the dependency of H from the currently available hardware platforms, as well as
the amount of time and space resources allotted to the solvers. In the remainder
of this section Γ, Σ and Π are fixed, and we write H(ϕ) to denote the hardness of
ϕ. In particular, Π is a family of identical Linux workstations comprised of 8 Intel
Core 2 Duo 2.13 GHz PCs with 4GB of RAM; the resources granted to the solvers
are 600s of CPU time and 3GB of memory. As for Γ and Σ, we consider the sets
of formulas and solvers that participated in the three most recent competitions of
QBF solvers (QBFEVAL). Further details about the datasets and links to the events
can be found in [17].

Understanding the relationship between H(ϕ) and twp requires the computa-
tion of both quantities for all the formulas in Γ, but with our choice of Γ computing
an exact value of twp is unfeasible, even for the smallest formulas. Therefore, we
built the tool QUTE – whose implementation is sketched in Figure 1 – in order to
provide us with approximate values of twp. As we can see in Figure 1, QUTE takes
as input a QBF ϕ and returns an approximate value t̂wp of the quantified treewidth
by performing the following steps:

• The input QBF is converted to the corresponding Gaifman graph G (line 1)
according to the construction presented in Section 2.
• An ordering σ is sought (line 2); the current implementation of FINDORDER-

ING is the maximum cardinality search (MCS) algorithm of [18].

5

SORTBYPREFIX(ϕ, {v1, v2, . . . , vn})
1 h← number of quantifier blocks of ϕ
2 Zh← h-th quantifier block of ϕ
3 i← 1; j← 1; s← 0
4 while (h > 0) do
5 if (vi ∈ Zh) then
6 v′

j ← vi; j← j + 1; Zh← Zh \ {vi}
7 if (Zh = ∅) then
8 h← h - 1
9 if (s 6= 0) then i← s; s← 0

10 else
11 if (s = 0) then s← i
12 while (vi 6∈ Zh) i← i + 1
13 return {v′

1, v
′
2, . . . v

′
n}

FILLIN ((V,E), {v1, v2, . . . , vn})
1 tw← 0
2 for v ∈ V do
3 M(v)← the set of vertices adjacent to v
4E′ ← E
5 for i← 1 to n do
6 if |M(vi)| > tw then
7 tw ← |M(vi)|
8 for u,w ∈M(vi) and(u,w) 6∈ E′ do
9 E′ ← E′ ∪ (u,w)

10 M(u)←M(u) ∪ {w}
11 M(w)←M(w) ∪ {u}
12 for u ∈M(vi) do
13 M(u)←M(u)\{vi}
14 return tw

QUTE(ϕ)
1G← Gaifman graph of ϕ
2 σ← FINDORDERING(G)
3 σ′← SORTBYPREFIX(ϕ, σ)
4 t̂wp← FILLIN(G, σ′)
5 return t̂wp

Figure 1: The algorithm of QUTE and the auxiliary functions SORTBYPREFIX and FILLIN.

• The function SORTBYPREFIX (line 3) transforms σ into another – possibly
identical – ordering σ′ which is compatible with the prefix of ϕ.
• Finally, the function FILLIN (line 4) computes the value of t̂wp by computing

a chordal completion of G in such a way that σ′ becomes a perfect elimina-
tion scheme; since σ′ is not guaranteed to yield the minimum value of tw
over all possible chordal completions, it turns out that t̂wp ≥ twp.

There are two important observations about QUTE. First, if FINDORDERING were
able to guess σ in such a way that the chordalization performed by FILLIN yields
the minimum maximal clique over all possible chordal completions, then t̂wp =
twp. In practice, FINDORDERING is just an heuristic, but efficient heuristics – like
MCS – do not guarantee a tight bound on the approximation, while more accurate
algorithms (like, e.g., QuickBB [19]) are hopelessly slow in our case. We have ex-
perimented with several FINDORDERING – indeed, all those available in the TreeD
library [20] on top of which QUTE is implemented – and we did not find sub-
stantial differences among different heuristics. Also, for graphs in which twp can
be computed – random graphs of up to 30 nodes – we have seen that decreasing
twp causes also t̂wp to decrease and, if the graph is either very sparse or mostly
connected, twp = t̂wp on most samples. However, the question whether t̂wp is a
reasonably tight approximation of twp for the kind of graphs that we deal with is
still an open point. Second, since by definition twp takes into account the prefix
structure, σ′ can be substantially different with respect to σ, and thus, in general,
twp ≥ tw. Moreover, all the QBFs we consider are in prenex CNF, meaning that
all the bound variables are constrained to a total order. Knowing the “true” pre-

6

QBFEVAL Syntactic features (PCA) t̂wp (distribution)

2006

2007

2008

Figure 2: Hardness vs. syntactic features (left) and treewidth (right).

fix structure, i.e., the partial order among the bound variables, may allow, in some
cases, to obtain a better approximation of twp than the one computed starting from
the prenex QBF. We consider all the above issues related to improving QUTE3 as
topics for future research.

The main result of this section is presented in Figure 2 where we consider hard
the formulas ϕ such that H(ϕ) = 1, and easy the formulas ϕ such that H(ϕ) = 0.
Concerning the QBFEVAL 2006 dataset, we have 73 easy formulas, and 56 hard
formulas. In the QBFEVAL 2007 dataset, easy and hard formulas are 215 and 263,
respectively, while in the 2008 dataset there are 559 easy and 790 hard QBFs. The
plots on the left-hand side of Figure 2 consider a set of 141 parameters that can be
computed inexpensively like, e.g., the number of clauses, the number of variables
and the alternation depth. The complete listing and a detailed description of such
parameters, that we collectively call syntactic features, can be found in [21]. The
plots on the right-hand side of Figure 2 are obtained by considering the distribu-
tions of t̂wp computed using QUTE on easy and hard formulas.

3The latest C++ implementation of QUTE is available at [17].

7

For each QBFEVAL dataset, in Figure 2 (left) we show plots obtained by con-
sidering each formula as a point in the multidimensional space of syntactic features.
Since it is impossible to visualize such a space, we consider its two-dimensional
projection obtained by means of a principal components analysis (PCA) and con-
sidering only the first two principal components.4 In Figure 2 (right) we show plots
obtained by considering the distributions of t̂wp computed for easy and hard for-
mulas. For each distribution, we show a box-and-whiskers diagram representing
the median (bold line), the first and third quartile (bottom and top edges of the box),
the minimum and maximum (whiskers at the top and the bottom) of a distribution.
Values laying farther away than the median ±1.5 times the interquartile range are
considered outliers and shown as dots on the plot.5 An approximated 95% confi-
dence interval for the difference in two medians is represented by the notches cut
in the boxes: if the notches of two plots do not overlap, this is strong evidence that
the two medians differ.

Considering the results shown in Figure 2 (right) we can conclude that t̂wp is a
robust marker of empirical hardness, since for all QBFEVAL datasets the distribu-
tion of t̂wp varies significantly across hard and easy instances. To get a quantitative
feeling of this, let us consider a simple Bayesian argument related to the problem
of deciding whether a given QBF ϕ is hard or not. For the sake of our argument,
the distributions in Figure 2 (right) represent p(t̂wp|H), i.e., the probability density
of t̂wp given the hardness H . The proportion of hard instances in each dataset is
the parameter r in p(H) = rH(1 − r)(1−H), i.e., the prior density of hardness H .
Looking at prior information only, we decide that a QBF ϕ is hard exactly when
P (H = 1)−P (H = 0) > 0, i.e., when r > 0.5. If we consider also the likelihood
p(t̂wp|H), then we can compute the posterior density p(H|t̂wp) using Bayes’ rule
and then decide that a QBF ϕ is hard exactly when

P (t̂wp(ϕ)|H(ϕ) = 1) · P (H(ϕ) = 1) > P (t̂wp(ϕ)|H(ϕ) = 0) · P (H(ϕ) = 0)

We close our argument by stating that in all the QBFEVAL datasets the accuracy
of the above criterion is strictly higher than looking at prior probabilities only.
For instance, in the QBFEVAL’08 dataset we have r = 0.54 meaning that P (H =
0) = 0.46 and P (H = 1) = 0.54. A priori, given a formula ϕ in the QBFEVAL’08
dataset we would decide that it is hard (H = 1), with a 54% accuracy, i.e., only
slightly more than tossing a fair coin. With the Bayesian approach, we obtain a
72% accuracy which is a definite increase in our predictive ability.

On the other hand, syntactic features are collectively unable to distinguish
among easy and hard instances. As we can see in Figure 2 (left), with the par-
tial exception of some hard instances in the QBFEVAL’07 dataset, there is a non-
negligible chance that easy and hard instances share similar values of such features.

4Details about PCA and its use for visualizing multidimensional datasets are beyond the scope of
this paper: see, e.g., Chap. 7 of [22] for an introduction to PCA and further references.

5In case outliers are detected, the whiskers extend up to the median +1.5 (resp. −1.5) times the
interquartile range, while the maximum (resp. minimum) value becomes the highest (resp. lowest)
outlier.

8

Group Feature Accuracy (%)

Treewidth (t̂wp) 72
Existential 49

Number of variables Universal 64
Total 49

Number of sets Total 54
Existential 45

Number of variables Universal 62
per set Total 46
Clauses-to-Variables 43

Group Feature Accuracy (%)
Unary 42
Binary 53

Number of clauses Horn 50
Dual Horn 50
Total 58
Existential 59
Universal 44

Number of occurrences Negative 42
per variable (mean) Positive 41

Total 41

Table 1: Discriminative power of syntactic features considering posterior probabilities.

Technically, we say that in the space of syntactic features it is hard to find a discrim-
inant – a curve in the PCA plots of Figure 2 – that allows us to tell easy instances
from hard ones with sufficient accuracy. Repeating the Bayesian argument above
for syntactic features on the QBFEVAL’08 dataset, we obtain the results of Ta-
ble 1. Here we can see that posterior probability densities do not yield substantial
improvements over prior probabilities except in the case of t̂wp meaning that, over-
all, syntactic features are far from the predictive power of approximated treewidth.
In some cases, including the “famous” clauses-to-variable ratio, conditioning hard-
ness on a syntactic feature is even worse than tossing a fair coin.

4 Treewidth and useful preprocessing
In this section we introduce our tool QUBIS, an incomplete solver which, given
an input QBF ϕ, may either solve it, or halt producing an equi-satisfiable QBF ϕ′,
where t̂wp(ϕ′) is no larger than t̂wp(ϕ) in most cases. The purpose of this section
is to show that QBF solvers benefit from getting the output of an incomplete run of
QUBIS rather than being fed the original QBF as input. In other words, preprocess-
ing helps when it decreases t̂wp and, in practice, this is often true independently
from the algorithm featured by the solver.

QUBIS is based on Q-resolution defined in [23] as an operation among clauses
of a QBF. In particular, given two clauses P ∨ x and R ∨ ¬x, where P and R are
disjunctions of literals, the clause P ∨R can be derived by Q-resolution subject to
the constraints that (i) x is an existential variable, and (ii) P and R do not share
any variable z such that ¬z (resp. z) occurs in P and z (resp. ¬z) occurs in R.
QUBIS uses Q-resolution to perform variable elimination on existential variables
defined, e.g., in [14], as the operation whereby, given a QBF Q1z1Q2z2 . . . ∃xΦ,
the variable x can be resolved away by performing all resolutions on x, adding
the resolvents to the matrix Φ and removing from Φ all the clauses containing x.
Universal variables can be eliminated simply by deleting them once they have the
highest prefix level. More precisely, given a matrix Φ, let Φ/z be the same matrix
whereby all the occurrences of z have been deleted. The QBF Q1z1Q2z2 . . . ∀yΦ
is true exactly when the QBF Q1z1Q2z2 . . .Φ/y is true, so y can be eliminated
safely. From the above, it immediately follows that variable elimination, once it

9

Encoding QBFs Description

add 32 equivalence checking of partial implementations of circuits
circ 63 FPGA logic synthesis
count 24 model checking of counter circuits
cp 24 conformant planning domains
k 378 modal K formulas
katz 20 symbolic reachability of industrially relevant circuits
s 171 symbolic diameter evaluation of ISCAS89 circuits
tipdiam 203 symbolic diameter evaluation of circuits

Table 2: Encodings used to experiment with QUBIS.

Solver add circ count cp k katz s tipdiam
Time # Time # Time # Time # Time # Time # Time # Time

QMRES 20 1061.53 – – 8 87.53 1 0.30 269 3072.22 7 51.90 6 36.00 58 2576.02
QUANTOR 8 20.94 7 141.66 12 16.05 16 1710.01 259 922.56 – – 17 1185.52 76 709.27
QUBE3.0 5 1.99 4 18.08 9 90.15 6 160.08 115 5552.56 – – 1 0.07 71 1132.97
QUBE6.1 5 1.34 4 4.87 9 116.52 5 169.14 203 4376.43 6 26.21 62 3006.31 151 1493.88
SKIZZO 14 814.80 6 79.11 12 5.88 7 287.40 348 7262.20 – – 19 1089.13 133 8554.86
YQUAFFLE 4 0.86 4 0.58 9 3.99 8 267.22 142 5622.60 – – 1 0.12 71 2162.84

Table 3: Performances of a selection of QBF solvers.

respects the prefix order, yields a decision procedure for QSAT (see, e.g., [15, 14]).
QUBIS takes as input a QBF ϕ and two parameters: (i) an integer deg, the

maximum degree allowed for a given variable considering the Gaifman graph of
ϕ; (ii) an integer div, the maximum value of diversity, a parameter defined in [16]
as the product of the number of positive and negative occurrences of a variable in
ϕ. The role of deg is thus to bound the number of variables in a clause, while
the role of div is to bound the (worst case) number of resolvents generated when
eliminating an existential variable. Intuitively, QUBIS eliminates variables until
the input QBF can be declared true, false or when eliminating variables is bound
to increase the size of the resulting QBF beyond some critical threshold. More
precisely, a variable qualifies for elimination only if it has the highest level in the
prefix of ϕ, and it is a universal variable, or if it is an existential variable, its degree
is no larger than deg and its diversity is no larger than div. Universal variables
are eliminated simply by deleting all their occurrences from the matrix of ϕ, while
existential variables are resolved away. In both cases, the resulting QBF is given
as argument to a recursive call of QUBIS. QUBIS terminates when one of the
following conditions is satisfied: (i) the matrix of ϕ is empty – in which case the
input QBF is true; (ii) the matrix of ϕ contains a contradictory clause – in which
case the input QBF is false; (iii) there are no variables that qualify for elimination
in ϕ – in which case ϕ is returned as output. Therefore, QUBIS is a sound and
complete decision procedure for the subclass of QBFs in which variables always
qualify for elimination, while for all the other formulas QUBIS6 behaves like a
preprocessor.

The experiments detailed in this section are carried out on the same computing
platforms described in Section 3, but here we focus on the 915 QBF encodings
summarized in Table 2 and on the following QBF solvers (references available
from [8]): QMRES, QUANTOR, QUBE3.0, QUBE6.1, SKIZZO, and YQUAFFLE.

6A proof-of-concept implementation in C++ of QUBIS can be downloaded from [17].

10

Our first experiment is to run the solvers on the QBF encodings, with the goal
of confirming the validity of the selection above. In particular, we wish to show
that the encodings considered are challenging enough given the current state of the
art, and that the algorithms featured by the solvers are “orthogonal”, i.e., solvers
have complementary abilities across different families. Table 3 shows the results:
the first column contains the solver names, and it is followed by eight groups of
columns, one for each encoding. The columns “#” and “Time” contain, respec-
tively, the number of formulas solved and the cumulative CPU seconds. A dash on
both columns means that the solver did not solve any formula. Looking at Table 3
we see that our selection is indeed valid for our purposes. For instance, considering
circ encodings we see that no single solver is able to solve more than about 10%
of them. Still considering the percentage of QBFs solved by any single solver, we
see that a similar result holds for katz encodings (about 30%) and s encodings
(about 35%). Furthermore, there is no single solver dominating over all encod-
ings: QMRES is best on add and second best on k encodings; QUANTOR is best
on count (ex-aequo with SKIZZO) and third best on k encodings; QUBE6.1 is
the strongest on tipdiam and s encodings – apparently due to internal prepro-
cessing, given the performances of QUBE3.0; SKIZZO, on the other hand, is the
strongest on k encodings. 7

In the next experiment, for each solver we consider the formulas that it could
not solve according to the results of Table 3. For each solver and each such formula
ϕ, we compute t̂wp(ϕ), preprocess ϕ with QUBIS – setting deg = 20 and div =
2000 – to yield a new QBF ϕ′ and then compute t̂wp(ϕ′) with QUTE (both QUBIS
and QUTE have a CPU time limit of 600 seconds). The goal of this experiment is
to see whether QUBIS, used as a preprocessor, is able to decrease t̂wp of (solver-
wise) hard encodings. Table 4 shows the results. The table is split horizontally in
two parts. In each part, the column “Solver” reports the name of a solver followed
by four groups of columns, one for each encoding of Table 2. Each group contains
five columns: H is the number of (solver-wise) hard formulas, H ′ is the number
of such formulas preprocessed by QUBIS for which QUTE was able to estimate
the treewidth, p is the number of formulas ϕ such that t̂wp(ϕ′) < t̂wp(ϕ). The
columns µ and µq contain the mean value of t̂wp across the formulas in H ′ before
(µ) and after (µq) preprocessing .

Looking at Table 4, we can see that, on average, preprocessing with QUBIS
decreases t̂wp. Indeed µq < µ for all solvers and all encodings in Table 4. In
several cases the set of encodings for which QUBIS is able to decrease t̂wp almost
coincides with the set that it is able to preprocess without exceeding its resource
limits. This phenomenon is most evident for the families add, circ – where H ′

and p actually coincide for almost all solvers – cp, and katz. In some cases,
e.g., two formulas in the add group and thirteen QUANTOR-hard encodings in the
k group, t̂wp can be decreased by one order of magnitude. Comparatively, there

7SKIZZO is also the strongest solver overall, with 539 encodings solved, 20% more than
QUBE6.1 which comes second best.

11

Solver add circ count cp
H H′ p µ µq H H′ p µ µq H H′ p µ µq H H′ p µ µq

QMRES 12 9 9 996 705 63 35 35 2055 1865 16 16 4 253 232 23 18 18 173 163
QUANTOR 24 21 21 541 398 56 28 28 2466 2234 12 12 3 311 309 8 4 4 447 438
QUBE3.0 27 24 23 507 364 59 31 31 2304 2090 15 15 4 254 229 18 13 13 211 203
QUBE6.1 27 24 23 507 364 59 31 31 2304 2090 15 15 4 254 229 19 14 14 203 193
SKIZZO 18 15 15 663 525 57 29 29 2425 2199 12 12 3 311 309 17 12 12 208 203
YQUAFFLE 28 25 24 490 353 59 31 31 2304 2090 15 15 4 254 229 16 11 11 221 215

k katz s tipdiam
H H′ p µ µq H H′ p µ µq H H′ p µ µq H H′ p µ µq

QMRES 109 71 55 370 364 13 13 13 351 306 165 6 6 796 497 145 97 94 311 194
QUANTOR 119 101 53 378 372 20 20 18 276 240 154 – – – – 127 80 79 352 219
QUBE3.0 263 194 76 182 178 20 20 18 275 240 170 9 9 557 353 132 85 83 345 214
QUBE6.1 175 151 59 93 89 14 14 14 331 289 109 – – – – 52 20 20 546 347
SKIZZO 30 18 17 276 269 20 20 18 275 240 152 – – – – 70 46 42 395 259
YQUAFFLE 236 185 74 204 200 20 20 18 275 240 170 9 9 557 353 132 85 84 342 213

Table 4: Results of treewidth analysis on QBF encodings and their preprocessed versions.

are only 38 cases in which the treewidth increased. Considering the total number
of literals in a formula as a size indicator, we found out that the average size of
such formulas is about one order of magnitude smaller than the size of the ones for
which QUBIS is able to decrease t̂wp, while the number of quantifier blocks is,
on average, a factor of two higher. Indeed, the net effect of QUBIS on these kind
of formulas is to increase the size of clauses without eliminating any quantifier
block, which means that t̂wp may increase because minimal cliques (clauses) are
bigger after preprocessing and the ordering on the vertices is as constrained as it
was before preprocessing.

Another relevant fact from Table 4 is that there are cases in which (i) estimating
twp is difficult and/or (ii) preprocessing is difficult. As it turns out, for some
unprocessed formulas, e.g., in the family s, we are not even able to compute t̂wp,
and for other formulas, e.g., in the family circ, we can compute t̂wp for more
formulas than the ones tamed by QUBIS. Needless to say, such families are quite
challenging and, on average, their members feature relatively high values of t̂wp.
One last observation about Table 4 is related to the fact that it may seem unlikely
that a tool like QUBIS is able to consistently decrease t̂wp – indeed, we have
discussed cases where the converse is true. By definition of twp, if we let M
be the size of the largest clause in a QBF ϕ, then we know that M ≤ twp(ϕ).
Since variable elimination tends to generate large clauses, we would expect that
in preprocessed formulas t̂wp is higher than in the original ones. However, as
discussed in [16], this is not necessarily the case, as long as the connectivity of
ϕ does not increase. Clearly, for QUBIS to work properly as a preprocessor, the
setting of the parameters deg and div is crucial – and not necessarily good in all the
situations. Our setting in the above experiments reflects a good trade-off between
efficiency in the usage of resources, and effectiveness in decreasing t̂wp.

In Table 5 we show the performances of QBF solvers on hard encodings af-
ter preprocessing. The Table is organized similarly to Table 4, and there are five
columns in each group: H is the number of hard QBFs for each solver/encoding,
S is the number of such formulas solved by QUBIS during preprocessing, “#”,
“Timep”, and “Time” contain, respectively, the total number of formulas solved

12

Solver add circ count cp
H S # Timep Time H S # Timep Time H S # Timep Time H S # Timep Time

QMRES 12 – 2 0.06 41.47 63 – – – – 16 – – – – 23 – – – –
QUANTOR 24 – – – – 56 – – – – 12 – – – – 8 – 1 0.58 41.50
QUBE3.0 27 – 1 0.04 9.04 59 – – – – 15 – – – – 18 – – – –
QUBE6.1 27 – 2 0.06 8.24 59 – – – – 15 – 15 0.21 57.32 19 – 2 1.73 412.82
SKIZZO 18 – – – – 57 – 9 2791.69 3274.30 12 – – – – 17 – – – –
YQUAFFLE 28 – 2 0.06 29.52 59 – – – – 15 – – – – 16 – 1 0.58 2.56

k katz s tipdiam
H S # Timep Time H S # Timep Time H S # Timep Time H S # Timep Time

QMRES 109 19 30 9.68 1508.64 13 – – – – 165 1 6 345.25 471.88 145 4 15 67.75 955.63
QUANTOR 119 – 35 1.72 2.76 20 – – – – 154 – – – – 127 3 4 0.01 67.19
QUBE3.0 263 55 88 11.10 3547.85 20 – 2 0.85 209.24 170 3 4 377.92 378.24 132 4 22 70.60 2061.39
QUBE6.1 175 14 50 0.87 4942.48 14 – – – – 109 – – – – 52 – – – –
SKIZZO 30 – 1 0.17 67.54 20 – 2 0.85 172.17 152 – – – – 70 – 10 6.25 2419.14
YQUAFFLE 236 37 63 6.22 4219.11 20 – – – – 170 3 4 357.35 380.96 132 4 19 72.75 1048.42

Table 5: Performances of a selection of QBF solvers on preprocessed encodings.

(including the ones solved by QUBIS), the preprocessing time, and the cumulative
CPU time in seconds (including preprocessing time). Looking at Table 5 (top),
considering the group add, we can see that QMRES, QUBE6.1 and YQUAFFLE

solve two previously unsolved formulas, while QUBE3.0 solves one. In particular,
QMRES is able to solve two more encodings since they had an estimated quanti-
fied treewidth of 658 and 943 but QUBIS decreased it to 77 and 93, respectively.
Considering the group circ, we can see that only SKIZZO is able to solve formu-
las (9 out of 29) that it found hard before preprocessing. Considering the group
count, as in the case of circ, we see that only QUBE6.1 takes advantage of
preprocessing by solving 15 previously unsolved formulas. Looking now at the cp
group, we see that QUBE6.1 solves 2 hard formulas, while both QUANTOR and
YQUAFFLE solve 1 hard formula.

Still with reference to Table 5, we consider now the encodings on the bottom.
In the group k, preprocessing turns out to be very effective for most solvers, with
the exception of SKIZZO because of a ceiling effect: indeed, SKIZZO alone is al-
ready quite effective on such formulas. On the other hand, search-based solvers
benefit the most, and it is fair to say that QUBIS complements the shortcomings
of these solvers on such encodings. However, it is interesting to notice that also
variable-elimination based solvers like QUANTOR and QMRES improve their per-
formances, which contributes to the thesis that decreasing t̂wp is useful indepen-
dently from the specific algorithm featured by the solver. As for the group katz,
only QUBE3.0 and SKIZZO are able to solve 2 previously unsolved formulas. Sim-
ilar results hold also for the s group, wherein QMRES is the solver which benefits
the most from preprocessing. The group tipdiam is quite interesting in its own,
since most solvers are able to benefit from preprocessing, again in an algorithm
independent fashion.

We conclude the analysis of Table 5 by mentioning that, overall, the dataset
therein considered consists of 272 hard – in the sense of Section 3 – formulas.
QUBIS can preprocess 113 such formulas in a successful way, i.e., without ex-
ceeding its resource bounds. Noticeably, considering an ideal solver that always
fares the best result for each pair solver/encoding after preprocessing, we have that

13

25 previously hard formulas can now be solved. Considering that QUBIS is still a
proof-of-concept implementation, we view this as an indication that preprocessing
geared towards reducing quantified treewidth is an enabler to deal with challenging
QBF encodings.

5 Related work and conclusions
The empirical role of treewidth has been previously explored in the CSP [24] and
SAT [16] literature. Before this paper, there was no such study in QBF, albeit
the papers about QUANTOR and QMRES (see,e.g., [15, 14]) implicitly leverage
the same concepts and are thus related to our contribution. From a theoretical
standpoint, there are two other papers [5, 6] that together with [4] consider the
relationship between structural restrictions of QBFs and the complexity of reason-
ing about them. Here, we follow [4] because its characterization of twp accounts
nicely for the structure of the prefix and the structure of the formula in a single
parameter. In [6], the prefix is taken into account by considering alternation depth,
while treewidth accounts only for the structure of the matrix. In [5] a completely
different kind of structural restriction, which is also incomparable with treewidth,
is presented. From an experimental point of view, it may be interesting to check
how the results of [6] and [5] apply to our setting, and whether they shed further
insight on the behaviour of QBF solvers on hard encodings.

Concerning QUBIS, our direct source of inspiration has been the algorithm of
Bounded Directional Resolution (BDR) presented in [16]. From an implementa-
tion point of view, even as a proof-of-concept implementation, QUBIS is more ad-
vanced than BDR. From an algorithmic point of view, the main difference between
BDR and QUBIS is that our solver uses dynamic, rather than static, reordering of
variables. Since QUBIS uses Q-resolution to eliminate variables, it is in this aspect
similar to QMRES [15] and QUANTOR [14]. However, our approach differs from
QMRES, because we do not use symbolic data structures, and also from QUANTOR

since we never expand universal variables.
In this paper we have studied the practical relevance of t̂wp as a marker of

empirical hardness in QBFs. We have shown that such approximation is, in a
statistical sense, a robust predictor of the difficulty encountered by solvers facing
QBF encodings. We have shown that other purely syntactic features, alone or in
combination among them, are not as good as t̂wp. Finally, we have shown that
decreasing t̂wp as done by QUBIS can enable QBF solvers to cope with hard
encodings. Our future work will include looking for more accurate bounds when
approximating twp, evaluating the impact of other preprocessors for QBFs on twp,
and an evaluation of twp as a control parameter for multi-engine solvers.

References
[1] H.L. Bodlaender. Treewidth: Characterizations, applications, and computations. Technical

report, Utrecht University, 2006.
[2] E. Freuder. Complexity of k-tree structured constraint satisfation problem. In In proc. of

AAAI’90, 1990.

14

[3] R. Dechter and J. Pearl. Tree Clustering for constraint networks. Artificial Intelligence, pages
61–95, 1989.

[4] H. Chen and V. Dalmau. From Pebble Games to Tractability: An Ambidextrous Consistency
Algorithm for Quantified Constraint Satisfaction. In In proc. of 19th Int.l workshop on Com-
puter Science Logic, volume 3634 of Lecture Notes in Computer Science. Springer-Verlag,
2005.

[5] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. The Complexity of Quantified Con-
straint Satisfaction Problems under Structural Restrictions. In IJCAI-05, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, pages 150–155. Profes-
sional Book Center, 2005.

[6] G. Pan and M.Y. Vardi. Fixed-Parameter Hierarchies inside PSPACE. In 21th IEEE Symposium
on Logic in Computer Science (LICS 2006), pages 27–36. IEEE Computer Society, 2006.

[7] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In 5th Annual
ACM Symposium on the Theory of Computation, pages 1–9, 1973.

[8] E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB), 2001. www.qbflib.org.

[9] M. Narizzano, L. Pulina, and A. Taccchella. QBF solvers competitive evaluation (QBFEVAL),
2006. http://www.qbflib.org/qbfeval.

[10] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods, pages 277–284, 1987.

[11] E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause-Term Resolution and Learning in
Quantified Boolean Logic Satisfiability. Artificial Intelligence Research, 26:371–416, 2006.
Available on-line at http://www.jair.org/vol/vol26.html.

[12] L. Zhang and S. Malik. Conflict driven learning in a quantified boolean satisfiability solver. In
Proceedings of International Conference on Computer Aided Design (ICCAD’02), 2002.

[13] M. Benedetti. sKizzo: a Suite to Evaluate and Certify QBFs. In 20th Int.l. Conference on
Automated Deduction, volume 3632 of LNCS, pages 369–376. Springer Verlag, 2005.

[14] A. Biere. Resolve and Expand. In Seventh Intl. Conference on Theory and Applications of
Satisfiability Testing (SAT’04), volume 3542 of LNCS, pages 59–70, 2005.

[15] G. Pan and M.Y. Vardi. Symbolic Decision Procedures for QBF. In 10th Conference on
Principles and Practice of Constraint Programming (CP 2004), 2004.

[16] I. Rish and R. Dechter. Resolution versus search: Two strategies for sat. Journal of Automated
Reasoning, 24(1/2):225–275, 2000.

[17] L. Pulina and A. Taccchella. MIND-Lab projects and related information, 2008. http:
//www.mind-lab.it/projects.

[18] R.E. Tarjan and M. Yannakakis. Addendum: Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J.
Comput., 14(1):254–255, 1985.

[19] V. Gogate and R. Dechter. A Complete Anytime Algorithm for Treewidth. In UAI ’04, Pro-
ceedings of the 20th Conference in Uncertainty in Artificial Intelligence, pages 201–208. AUAI
Press, 2004.

[20] Sathiamoorthy Subbarayan and Henrik Reif Andersen. Backtracking Procedures for Hypertree,
HyperSpread and Connected Hypertree Decomposition of CSPs. In IJCAI, pages 180–185,
2007.

[21] L. Pulina and A. Tacchella. A multi-engine solver for quantified boolean formulas. In 13th
Conference on Principles and Practice of Constraint Programming (CP 2007), volume 4741
of LNCS, pages 574–589. Springer Verlag, 2007.

[22] I.H. Witten and E. Frank. Data Mining (2nd edition). Morgan Kaufmann, 2005.
[23] H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas.

Information and Computation, 117(1):12–18, 1995.
[24] J. Larrosa and R. Dechter. Boosting Search with Variable Elimination in Constraint Optimiza-

tion and Constraint Satisfaction Problems. Constraints, 8(3):303–326, 2003.

15

