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Abstract
When information comes from different sources inconsistent be-

liefs may appear. To handle inconsistency, several model-based belief
merging operators have been proposed. Starting from the beliefs of a
group of agents which might conflict, these operators return a unique
consistent belief base which represents the beliefs of the group. The
operators, parameterized by a distance between interpretations and
aggregation function, usually only take into account consistent bases.
Consequently some information which is not responsible for conflicts
may be ignored. This paper presents PS-Merge, an alternative way
of merging which is based on the notion of Partial Satisfiability. The
proposal uses an alternative way of measuring the satisfaction of a
formula since Partial Satisfiability lets us have satisfaction values in
the interval [0,1]. PS-Merge produces similar results to other merg-
ing approaches. Actually, in order to achieve satisfactory results for
different scenarios from the literature we require different merging op-
erators while the proposal obtains similar results for all these different
scenarios with a unique operator, PS-Merge.

1 Introduction

Belief merging is concerned with the process of combining the information
contained in a set of (possibly inconsistent) belief bases obtained from dif-
ferent sources to produce a single consistent belief base. Belief merging is an
important issue in artificial intelligence and databases, and its applications
are many and diverse [2]. For example, in multiagent systems a merging op-
erator defines the beliefs of a group of agents according to the beliefs of each
member of the group. When agents have conflicting beliefs about the “true”
state of the world, belief merging can be used to determine the “true” state
of the world for the group. Though we consider only belief bases, merging
operators can typically be used for merging either beliefs or goals.

Several merging operators have been defined and characterized in a logi-
cal way. Among them, model-based merging operators [10, 7, 15, 11] obtain
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a belief base from a set of interpretations with the help of a distance mea-
sure on interpretations and an aggregation function. Usually, model-based
merging operators only take into account consistent belief bases and con-
sequently some information which is not responsible for conflicts may be
ignored. Other merging operators, syntax-based ones [1], are based on the
selection of some consistent subsets of the set-theoretic union of the belief
bases. This allows for taking inconsistent belief bases into account, but such
operators usually do not take into account the frequency of each explicit
item of belief. For example, the fact that a formula ψ is believed in a base
or in n bases is not considered relevant, which is counter-intuitive.

An alternative method of merging uses the notion of Partial Satisfiability
to define PS-Merge, a model-based merging operator which depends on
the syntax of the belief bases [3]. The proposal produces similar results to
other merging approaches, but while other approaches require many merging
operators in order to achieve satisfactory results for different scenarios the
proposal obtains similar results for all these different scenarios with a unique
operator. It is worth noticing that PS-Merge is not based on distance
measures on interpretations, and takes into account inconsistent bases and
the frequency of each explicit item of belief. We study some logical properties
satisfied by PS-Merge and analyze the rational behavior of the operator.

The rest of the paper is organized as follows. After providing some
technical preliminaries, Section 3 describes the notion of Partial Satisfiability
and the associated merging operator. Section 4 studies some properties
satisfied by PS-Merge in the context of postulates proposed in [7, 8]. In
Section 5 we give a comparison of PS-Merge with other approaches and
Section 6 concludes with a discussion of future work.

2 Preliminaries

We consider a language L of propositional logic formed from a finite ordered
set P := {p1, p2, ..., pn} of atoms in the usual way. And we use the standard
terminology of propositional logic except for the definitions given below. A
belief base K is a finite set of propositional formulas of L representing the
beliefs of an agent (we identify K with the conjunction of its elements).

A state or interpretation is a function w from P to {1, 0}, these values are
identified with the classical truth values true and false respectively. The set
of all possible states will be denoted as W and its elements will be denoted
by vectors of the form (w(p1), ..., w(pn)). A model of a propositional formula
Q is a state such that w(Q) = 1 once w is extended in the usual way over
the connectives. For convenience, if Q is a propositional formula or a set of
propositional formulas then P(Q) denotes the set of atoms appearing in Q.
|P | denotes the cardinality of set P . A literal is an atom or its negation.

A belief profile E denotes the beliefs of agents K1, ...,Km that are in-
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volved in the merging process. If Q1i , ..., Qni denotes the beliefs in the base
Ki, then E = {{Q11 , ..., Qn1}, ..., {Q1m , ..., Qnm}}. E is a multiset (bag) of
belief bases and thus two agents are allowed to exhibit identical bases.

Two belief profiles E1 and E2 are said to be equivalent, denoted by
E1 ≡ E2, iff there is a bijection g from E1 to E2 such that K ≡ g(K) for
every base K in E1. With

∧
E we denote the conjunction of the belief bases

Ki ∈ E, while t denotes the multiset union. For every belief profile E and
positive integer n, En denotes the multiset union of n times E.

3 Partial Satisfiability

In order to define Partial Satisfiability without loss of generality we consider
a normalized language so that each belief base is taken as the disjunctive nor-
mal form (DNF) of the conjunction of its elements. Thus if K = {Q1, ..., Qn}
is a belief base we will identify this base with QK = DNF (Q1 ∧ ... ∧ Qn).
The DNF of a formula is obtained by replacing A ↔ B and A → B by
(¬A ∨B) ∧ (¬B ∨A) and ¬A ∨B respectively, applying De Morgan’s laws,
using the distributivity law, distributing ∨ over ∧ and finally eliminating
the literals repeated in each conjunct.

Example 1. Given the belief base K = {a → b,¬c} it is identified with
QK = (¬a ∧ ¬c) ∨ (b ∧ ¬c).

The last part of the construction of the DNF (the minimization by elim-
inating literals) is important since the number of literals in each conjunct
affects the satisfaction degree of the conjunct. We are not applying other
logic minimization methods to reduce the size of the DNF expressions since
this may affect the intuitive meaning of the formulas. A further analysis
of logic equivalence and the results obtained by the Partial Satisfiability is
required.

Definition 1 (Partial Satisfiability). Let K be a belief base, w any state of
W and |P | = n, we define the Partial Satisfiability of K for w, denoted as
wps(QK), as follows.

• If QK := C1 ∧ ... ∧ Cs where Ci are literals then

wps(QK) = max

{
s∑
i=1

w(Ci)
s

,
n− |P(QK)|

2n

}

• If QK := D1 ∨ ... ∨Dr where each Di is a literal or a conjunction of
literals then

wps(QK) = max {wps(D1), ..., wps(Dr)}
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The intuitive interpretation of Partial Satisfiability is as follows: it is
natural to think that if we have the conjunction of two literals and just one is
satisfied then we are satisfying 50% of the conjunction. If we generalize this
idea we can measure the satisfaction of a conjunction of one or more literals
as the sum of the evaluation of them under the interpretation divided by the
number of conjuncts. However, the agent’s beliefs may consider only some
atoms of the language, in that case the agent is not affected by the decision
taken over the atoms not appearing in its beliefs. Hence it is indifferent to
the evaluation of these atoms, so we interpret this indifference as a partial
satisfaction of 50% for each atom not appearing in its beliefs.

On the other hand the agent is interested in satisfying the literals that
appear in its beliefs and we interpret this fact by assigning a satisfaction of
100% to each literal verified by the state and 0% to those that are falsified.
As we can see the former intuitive idea is reflected in Definition 1 since the
literals that appear in the agent beliefs have their classical value and atoms
not appearing have a value of just 1

2 .
Finally, if we have a disjunction of conjunctions the intuitive interpre-

tation of the valuation is to obtain the maximum value of the considered
conjunctions.

Example 2. The Partial Satisfiability of the belief base of Example 1 given
P = {a, b, c} and w = (1, 1, 1) is

wps(QK) = max
{
max{w(¬a)+w(¬c)

2 , 1
6},max{

w(b)+w(¬c)
2 , 1

6}
}

= 1
2 .

Instead of using distance measures as [7, 11, 8, 12] we have proposed the
notion of Partial Satisfiability in order to define a new merging operator.
The elected states of the merge are those whose values maximize the sum
of the Partial Satisfiability of the bases.

Definition 2. Let E be a belief profile obtained from the belief bases K1, ...,
Km, then the Partial Satisfiability Merge of E denoted by PS-Merge(E) is
a mapping from the belief profiles to belief bases such that the set of models
of the resulting base is:{

w ∈ W

∣∣∣∣∣
m∑
i=1

wps(QKi) ≥
m∑
i=1

w′ps(QKi) for all w
′ ∈ W

}
Example 3. We now give a concrete merging example taken from [14]. The
author proposes the following scenario: a teacher asks three students which
among three languages, SQL, Datalog and O2, they would like to learn. Let
s, d and o be the propositional letters used to denote the desire to learn SQL,
Datalog and O2, respectively, then P = {s, d, o}. The first student only wants
to learn SQL or O2, the second wants to learn only one of Datalog or O2, and
the third wants to learn all three languages. So we have E = {K1,K2,K3}
with K1 = {(s ∨ o) ∧ ¬d}, K2 = {(¬s ∧ d ∧ ¬o) ∨ (¬s ∧ ¬d ∧ o)}, and
K3 = {s ∧ d ∧ o}.
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In [12] using the Hamming distance applied to the anonymous aggrega-
tion function Σ and in [7] using the operator ∆Σ, both approaches obtain
the states (0, 0, 1) and (1, 0, 1) as models of the merging.

We have QK1 = (s∧¬d)∨ (o∧¬d), QK2 = (¬s∧ d∧¬o)∨ (¬s∧¬d∧ o),
and QK3 = s∧d∧o. As we can see in the fifth column of Table 1 the models
of PS-Merge(E)1 are the states (0, 0, 1) and (1, 0, 1).

w QK1 QK2 QK3 Sum min

(1, 1, 1) 1
2

1
3 1 11

6 ' 1.83 1
3

(1, 1, 0) 1
2

2
3

2
3

11
6 ' 1.83 1

2
(1,0,1) 1 2

3
2
3

14
6 ' 2.33 2

3
(1, 0, 0) 1 1

3
1
3

10
6 ' 1.67 1

3
(0, 1, 1) 1

2
2
3

2
3

11
6 ' 1.83 1

2
(0, 1, 0) 1

6 1 1
3

9
6 = 1.5 1

6
(0,0,1) 1 1 1

3
14
6 ' 2.33 1

3
(0, 0, 0) 1

2
2
3 0 7

6 ' 1.16 0

Table 1: PS-Merge of Example 3 and min function.

In [8] two classes of merging operators are defined: majority and arbi-
tration merging. The former strives to satisfy a maximum of agents’ beliefs
and the latter tries to satisfy each agent beliefs to the best possible degree.
The former notion is treated in the context of PS-Merge, and it can be
refined tending to arbitration if we calculate the minimum value among the
Partial Satisfiability of the bases. Then with this indicator, we have a form
to choose the state that is impartial and tries to satisfy all agents as far as
possible. If we again consider Example 3 in Table 1 there are two differ-
ent states that maximize the sum of the Partial Satisfaction of the profile,
(1, 0, 1) and (0, 0, 1). If we try to minimize the individual dissatisfaction
these two states do not provide the same results. Using the min function
(see 6th column of Table 1) over the partial satisfaction of the bases we
get the states that minimize the individual dissatisfaction and between the
states (1, 0, 1) and (0, 0, 1) obtained by the proposal we might prefer the
state (1, 0, 1) over (0, 0, 1) as the ∆GMax operator (an arbitration operator)
does in [7].

It is possible to extend this notion of PS-Merge in the case where a set
of integrity constraints must be obeyed. If µ is a formula representing the set
of integrity constraints, then the states that falsify the integrity constraint
cannot be considered in the PS-Merge. If W(µ) denotes the set of states
that validate the integrity constraints, it is enough to restrict the definition
of the Partial Satisfiability Merge to W(µ).

1If ∆ is a merging operator, we are going to abuse the notation by referring to the
models of the merging operator mod(∆(E)) and their respective belief base ∆(E) simply
as ∆(E).
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Definition 3. Let E be a belief profile obtained from the belief bases K1, ...,
Km, then PS-Mergeµ(E), the Partial Satisfiability Merge of E given the
set of integrity constraints µ, is a mapping from the belief profiles to belief
bases such that the set of models of the resulting base is:{

w ∈ W(µ)

∣∣∣∣∣
m∑
i=1

wps(QKi) ≥
m∑
i=1

w′ps(QKi) for all w
′ ∈ W(µ)

}
Example 4. The following example of information merging under con-
straints is given in [8]. At a meeting of four co-owners of a block of flats,
the chairman proposes the construction of a swimming-pool, a tennis-court
and a private-car-park in the coming year. But if two of these three items
are built, the rent will increase significantly. We will denote by s, t and
p the construction of the swimming-pool, the tennis-court and the private
car-park respectively and i will denote the increase of the rent. Two co-
owners want to build the three items, and do not care about the rent increase
(K1 = K2 = s ∧ t ∧ p), the third thinks that building any item will cause at
some time an increase of the rent and wants to pay the lowest rent so he is
opposed to any construction (so K3 = ¬s∧¬t∧¬p∧¬i) and finally the last
one thinks that the flat really needs a tennis-court and a private car-park but
does not want a rent increase (i.e. K4 = t ∧ p ∧ ¬i).

The chairman outlines that building two or more items will increase the
rent significantly. This fact cannot be ignored and the states in which this
fact is falsified must be ignored. These kinds of facts are known as integrity
constraints. In the example the integrity constraints µ are represented by
the single formula ((s ∧ t) ∨ (s ∧ p) ∨ (t ∧ p)) → i. If we consider P the
ordered set {s, t, p, i} then the states (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0) and
(0, 1, 1, 0) cannot be considered as a possible Partial Satisfiability Merge
since these states falsify the integrity constraint. It is enough to calculate
the Partial-Satisfiability to states in W(µ).

The answer to Example 4 obtained by applying PS-Merge (see Table
2) is the state (1, 1, 1, 1), i.e. the decision that satisfies the majority of
the group is to build the three items no matter if the rent increases. This
decision is also the one obtained using the integrity constraint majority
merging operator based on the Σ function in [8, 9].

4 Properties

Finding a set of axiomatic properties that an operator may satisfy in order
to exhibit a rational behavior is a concern greatly studied. In [7, 15, 10, 11]
sets of postulates have been proposed concerning belief merging operators.

In [7, 9] Konieczny and Pino-Pérez proposed the basic properties (A1)-
(A6) for merging operators, rephrased without reference to integrity con-
straints.
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w QK1 QK2 QK3 QK4 Sum

(1,1,1,1) 1 1 0 2
3

8
3

(1, 1, 1, 0)∗ 1 1 1
4 1 13

4
(1, 1, 0, 1) 2

3
2
3

1
4

1
3

23
12

(1, 1, 0, 0)∗ 2
3

2
3

1
2

2
3

15
6

(1, 0, 1, 1) 2
3

2
3

1
4

1
3

23
12

(1, 0, 1, 0)∗ 2
3

2
3

1
2

2
3

15
6

(1, 0, 0, 1) 1
3

1
3

1
2

1
8

31
24

(1, 0, 0, 0) 1
3

1
8

3
4

1
3

37
24

(0, 1, 1, 1) 2
3

2
3

1
4

2
3

27
12

(0, 1, 1, 0)∗ 2
3

2
3

1
2 1 17

6
(0, 1, 0, 1) 1

3
1
3

1
2

1
3

3
2

(0, 1, 0, 0) 1
3

1
3

3
4

2
3

25
12

(0, 0, 1, 1) 1
3

1
3

1
2

1
3

3
2

(0, 0, 1, 0) 1
3

1
3

3
4

2
3

25
12

(0, 0, 0, 1) 1
8

1
8

3
4

1
8

9
8

(0, 0, 0, 0) 1
8

1
8 1 1

3
19
12

Table 2: PS-Merge table of Example 4.

Definition 4. Let E, E1, E2 be belief profiles, and K1 and K2 be consistent
belief bases. Let ∆ be an operator which assigns to each belief profile E
a belief base ∆(E). ∆ is a merging operator if and only if it satisfies the
following postulates:

(A1) ∆(E) is consistent
(A2) if

∧
E is consistent then ∆(E) ≡

∧
E

(A3) if E1 ≡ E2, then ∆(E1) ≡ ∆(E2)
(A4) ∆({K1,K2}) ∧ K1 is consistent if and only if ∆({K1,K2}) ∧ K2 is
consistent
(A5) ∆(E1) ∧∆(E2) |= ∆(E1 t E2)
(A6) if ∆(E1) ∧∆(E2) is consistent, then ∆(E1 t E2) |= ∆(E1) ∧∆(E2)

The intuitive meaning of the postulates is as follows: (A1) ensures the
extraction of a piece of information from the profile. (A2) states that if
the belief bases agree on some alternatives, then the result of the merging
will be these alternatives. (A3) ensures that the operator obeys a principle
of irrelevance of syntax. (A4) is the fairness postulate, such that when we
merge two bases the operator should not give preference to one of them.
(A5) expresses the following: if we have two groups viewed as profiles E1

and E2, and E1 compromises a set of alternatives to which A belongs, and
E2 compromises another set which also contains A, then if we join the two
groups A must be in the chosen alternatives. (A5) and (A6) together state
that if one could find two groups which agree on at least one alternative,
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then the result of the global merging will be exactly these alternatives.
We analyze the minimal set of properties PS-Merge satisfies and its

rational behavior concerning merging. Clearly PS-Merge satisfies (A1),
which simply requires of the result of merging to be consistent. PS-Merge
also satisfies (A2).

Proposition 1.
∧
E 2 ⊥ implies PS-Merge(E) ≡

∧
E.

Proof. Let E = {QK1 , ..., QKm} be a profile with its belief bases expressed
in DNF such that

∧
E 2 ⊥. There are l > 0 states w1, ..., wl that sat-

isfy each base thus for every state wr we can find m disjoints d1, ..., dm
belonging to each base QK1 , ..., QKm respectively, that are satisfied by wr.
Consequently the Partial Satisfiability of the bases for every wr is evaluated
in 1, i.e. wrps(QKj ) = 1 for 1 ≤ r ≤ l and 1 ≤ j ≤ m. So we can affirm
that

∑m
i=1wrps(QKi) = m for each model of the profile. Notice that every

disjoint can have either of two values
∑s

i=1
w(Ci)
s or n−|P (dj)|

2n (see Defini-
tion 1). Moreover the first value is less or equal to 1 and the second one
is less or equal to n

2n = 1
2 . From this fact we can affirm that if a state w

does not satisfy a base QK then wps(QK) < 1 and we can conclude that∑m
i=1wps(QKi) < m for the states that do not satisfy the profile. Hence a

state w is included in the merge iff w is a model of
∧
E, i.e. we obtain only

models of the conjunction of the bases as a result of PS-Merge when the
profile is consistent.

The next property (A3) is a version of Dalal’s principle of the Irrelevance
of Syntax [4]. In general, PS-Merge does not satisfy (A3). Consider the
situation, called implicit knowledge in [6], where systems want to extract
additional knowledge that is not locally held by any agent. For example,
if an agent knows a and another agent knows a → b, then combining their
knowledge yields b, whereas neither one of them individually knows it. Using
most of the merging operators we can find the expected result. Now suppose
that this situation is presented in the mind of an agent, i.e. both facts a and
a→ b are known by an agent who does not know how to combine the facts
in order to produce b and hence its beliefs in DNF are K1 = (a∧¬a)∨(a∧b).
On the other hand suppose another agent who knows explicitly that a and
b hold, i.e. its beliefs in DNF are K2 = a ∧ b. We can see that both
agents’ bases are equivalent. Now using PS-Merge to combine the bases
with another agent’s base K3 = ¬b, we obtain the states (1, 0) and (0, 0)
from merging K1 and K3 and only the state (1, 0) from merging K2 and K3.
PS-Merge is a majority operator which tries to satisfy each base as much
as possible. Hence in the first case the maximum percentage of satisfaction
for K1 is 50% if it wants to leave a percentage of satisfaction for K3 different
from 0%, noticing that state (1, 0) satisfies a and (0, 0) satisfies a→ b. In the
second case where K2 is satisfied 50% by (1, 0), we can see that if the agent
knows explicitly the facts then PS-Merge refines the answer. We can also

8



see that even though (A3) is not satisfied by PS-Merge, the results show
a realistic behavior. The result of combining information without making
inferences beforehand might not be as detailed as when agents find some
consequences of their knowledge before the merging.

In general, PS-Merge does not satisfy (A4). Consider again K1 =
(a∧¬a)∨ (a∧b) and K3 = ¬b. We can see that both bases are consistent by
themselves, however, their conjunction is not. As we know from the example
above, using PS-Merge to combine them we obtain the states (1, 0) and
(0, 0) which clearly favor K3. Here it is important to notice that K1 shows
an indecision ¬a∨ b of the agent that is why the merging process prefers the
satisfaction of the “confident” source K3. However, if PS-Merge takes as
parameters bases showing only explicit information, for example K2 = a∧ b
and K3 = ¬b, the merging process does not lead to a preference for any of
them. The result of the example is state (1, 0) which is not the models of
either base.

If there is no “redundant” information, i.e. formulas including disjoints
of the style a ∧ ¬a, then (A3) and (A4) are satisfied. PS-Merge satisfies
the property (A4) under certain restrictions.

Proposition 2. ∆({K1,K2}) ∧K1 2 ⊥ iff ∆({K1,K2}) ∧K2 2 ⊥.

(A5) and (A6) establish connections between two results; the result ob-
tained when merging each of two belief profiles and then taking their con-
junction and the result obtained when first combining the two belief profiles
and then performing a single merge. Together the two properties require
that these two results be equivalent, provided that the conjunction refer-
enced is not inconsistent. PS-Merge satisfies (A5) but it is necessary to
consider that profiles come from different contexts and they can have differ-
ent languages. In this case it will be necessary to extend the language of E1

to include the atoms appearing in E2 and vice versa.

Proposition 3. If P(E1) = P(E2) then PS-Merge(E1)∧PS-Merge(E2) |=
PS-Merge(E1 t E2)

Proof. If PS-Merge(E1) ∧ PS-Merge(E2) is consistent then each model
w of the conjunction maximizes the Partial Satisfaction of E1 and E2 at
the same time because w is model of each merging. I.e.

∑
ki∈E1

wps(QKi) ≥∑
ki∈E1

w′ps(QKi) and
∑

ki∈E2
wps(QKi) ≥

∑
ki∈E2

w′ps(QKi) for all w′ ∈ W.
The merging of the union of the profiles is simply the sum of the Partial
Satisfaction of the profiles E1 and E2. Then for all w′ ∈ W:∑
ki∈E1tE2

wps(QKi) =
∑
ki∈E1

wps(QKi) +
∑
ki∈E2

wps(QKi) ≥∑
ki∈E1

w′ps(QKi) +
∑
ki∈E2

w′ps(QKi) =
∑

ki∈E1tE2

w′ps(QKi)
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Remark 1. By definition the PS-Merge is commutative. I.e. the result of
the merging does not depend on any order of the bases of the profile.

As stated before there are two important classes of merging operators,
majority and arbitration operators. The behavior of majority operators is
to say that if an opinion is the most popular, then it will be the opinion
of the group. A postulate that captures this idea is the postulate (M7) of [7].

(M7) ∀K∃n ∈ N ∆(E t {K}n) |= K

PS-Merge satisfies the postulate (M7) as a direct consequence of the
definition of PS-Merge. Even more, the definition of PS-Merge not only
tries to satisfy the majority of the group, it also tries to satisfy to the max-
imum degree (see for example 10 in the following section). PS-Merge does
not satisfy all the postulates (A1)-(A6), however, it behaves as a majority
merging operator. As the reader can see in the next section the behavior of
PS-Merge is close to ∆Σ and CMerge which are majority operators.

5 Comparing results

PS-Merge yields similar results compared with existing techniques such
as CMerge, the ∆Σ

2 operator and MCS (Maximal Consistent Subsets)
considered in [11, 7, 8]. Let E be in each case the belief profile consisting
of the belief bases enlisted below and let P be corresponding set of atoms
ordered alphabetically.

1. K1 = K2 = {a} and K3 = {¬a}. CMerge(E) = {a} which is equiva-
lent to PS-Merge(E) = ∆Σ(E) = {(1)}.

2. K1 = {b}, K2 = {a, a → b} and K3 = {¬b}. Here CMerge(E) =
{a, a→ b} which is equivalent to PS-Merge(E) = ∆Σ(E) = {(1, 1)}.

3. K1 = {b}, K2 = {a, b} and K3 = {¬b}. In this case CMerge(E)
and the model obtained from ∆Σ(E) and PS-Merge(E) are as in the
previous case.

4. K1 = {b}, K2 = K3 = {a → b} and K4 = {a,¬b}. CMerge(E) =
{a, a → b} and PS-Merge(E) = ∆Σ(E) = {(1, 1)} which are all
equivalent.

5. K1 = {a, c}, K2 = {a → b,¬c} and K3 = {b → d, c}. In this
case CMerge(E) = {a, a → b, b → d, c} which is equivalent to PS-
Merge(E) = ∆Σ(E) = {(1, 1, 1, 1)}.

2As stated in [7], merging operator ∆Σ is equivalent to the merging operator proposed
by Lin and Mendelzon in [11] called CMerge.
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6. K1 = {a, c}, K2 = {a → b,¬c}, K3 = {b → d, c} and K4 = {¬c}.
While CMerge(E) =MCS(E) ={a, a→ b, b→ d} which is equivalent
to ∆Σ(E) = {(1, 1, 0, 1), (1, 1, 1, 1)}, PS-Merge(E) = {(1, 1, 0, 1)}.
CMerge, MCS and the ∆Σ operator give no information about c.
Using PS-Merge, c is falsified and this leads us to have total satisfac-
tion of the second and fourth bases and partial satisfaction of the first
and third bases.

7. K1 = {a}, K2 = {a→ b} and K3 = {a,¬b}. Now CMerge(E) = {a},
∆Σ(E) = {(1, 1), (1, 0)} and PS-Merge(E) = {(1, 1)}. The model
(1, 0) satisfies only two bases while the model (1, 1) satisfy two bases
and a “half” of the third base.

8. K1 = {a}, K2 = {a → b}, K3 = {a,¬b} and K4 = {¬b}. In this
case CMerge(E) = {a ∧ ¬b}, which is equivalent to PS-Merge(E) =
∆Σ(E) = {(1, 0)}.

9. K1 = {b}, K2 = {a → b} and K3 = {a,¬b}. Now CMerge(E) =
{a ∧ b} and PS-Merge(E) = ∆Σ(E) = {(1, 1)}.

10. K1 = {b}, K2 = {a → b}, K3 = {a,¬b} and K4 = {¬b}. In this
case CMerge(E) = {a ∨ ¬b}, ∆Σ(E) = {(0, 0), (1, 0), (1, 1)} and PS-
Merge(E) = {(1, 1), (0, 0)}. The model (1, 0) obtained using ∆Σ op-
erator satisfies only two bases, while the two options of PS-Merge(E)
satisfy two bases and a “half” of the third base. Then PS-Merge is a
refinement of the answer given by CMerge and ∆Σ.

11. K1 = K2 = {a∧b∧c}, K3 = {¬a∧¬b∧¬c∧¬d} and K4 = {b∧c∧¬d}
with the restriction that if two of a, b or c are validated it forces d to
be validated as well. CMerge(E) = {a ∧ b ∧ c ∧ d}, PS-Merge(E) =
∆Σ(E) = {(1, 1, 1, 1)}.

6 Conclusion

A merging operator has been proposed in [3] that is not defined in terms of
a distance measure on interpretations, but is Partial Satisfiability-based. It
appears to resolve conflicts among the belief bases in a natural way. The
idea is intended to extend the notion of satisfiability to one that includes a
“measure” of satisfaction. This notion of satisfaction considers that when-
ever an atom does not appear in a formula then it is considered that the
agent has no preferences on this atom so a partial satisfaction different from
0 is assigned. In Definition 1 we chose 1

2 . This measure considers the in-
tuitive idea that an “or” is satisfied if any of its disjoints is satisfied and
in the case of an “and” we count the number of conjuncts satisfied; but if
none then we count the partial satisfaction of the atoms not appearing in
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the conjunction. We can think that a state always satisfies a formula by a
percentage, which is given by the Partial Satisfiability. Once a satisfaction
measure of belief bases is given, it is used to define PS-Merge. Unlike the
operators proposed in the literature, in order to know the “degree” of sat-
isfaction by a given state, PS-Merge does not need to calculate a partial
pre-order over the set of states since Partial Satisfiability can be calculated
for a single state. In this way the comparison between states becomes easier.
This property can be used in many real-world collective decision problems,
as a set of alternatives is given and the method selects a collectively pre-
ferred belief base from the set of candidates. However, it is necessary to take
into account that before calculating the Partial Satisfiability of a formula it
is necessary to transform it into DNF.

Unlike other approaches PS-Merge can consider belief bases which are
inconsistent, since the source of inconsistency can refer to specific atoms and
the operator takes into account the rest of the information.

The approach bears some resemblance to the belief merging framework
proposed in [7, 8, 11, 12], particularly with the ∆Σ operator. As with those
approaches the Sum function is used, but instead of using it to measure the
distance between the states and the profile PS-Merge uses Sum to calculate
the general degree of satisfiability. The result of PS-Merge are simply the
states which maximize the Sum of the Partial Satisfiability of the profile and
it is not necessary to define a partial pre-order. Because of this similarity
between PS-Merge and ∆Σ we propose to analyze this similarity in term of
the postulates satisfied by ∆Σ outlined in [7, 8]. In this paper we analyzed
some of these postulates, and even though the PS-Merge does not satisfy
all the properties cited in [7, 11] it has a rational behavior.

As in [8] in order to consider integrity constraints PS-Merge selects the
states among the states which validate the integrity constraints rather than
those inW. The approach behaves as a majority operator but an arbitration
operator can also be defined in terms of Partial Satisfiability in a similar way.

As future work a further analysis of the PS-Merge is necessary to char-
acterize its behaviour in terms of postulates. As well, study of the properties
of the approach including integrity constraints is required. It remains for
the definition of an arbitration operator in terms of Partial Satisfiability and
the corresponding characterization to be considered. It is necessary to study
the complexity of the whole process of the PS-Merge in order to compare
it with the existing techniques. Finally, we intend to combine the proposal
with a heuristic for solving problems with combinatorial explosion.
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