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Abstract

In recent years, the declarative programming philosophy has had
a visible impact on new emerging disciplines, such as heterogeneous
multi-agent systems and flexible business processes. We address the
problem of formal verification for systems specified using declarative
languages, focusing in particular on the Business Process Management
field. We propose a verification method based on the g-SCIFF ab-
ductive logic programming proof procedure and evaluate our method
empirically, by comparing its performance with that of other verifica-
tion frameworks.

1 Introduction

Since its introduction, the declarative programming paradigm has been suc-
cessfully adopted by IT researchers and practitioners. As in the case of logic
programming, the separation of logic aspects from control aspects long advo-
cated by Kowalski [16] enables the programmer to more easily write correct
programs, improve and modify them. In recent years, the declarative pro-
gramming philosophy has had a visible impact on new emerging disciplines.
Examples are multi-agent interaction protocol specification languages, which
rely on declarative concepts such as commitments [23] or expectations [1]
and make an extensive use of rules, business rules [18] and declarative Busi-
ness Process (BP) specification languages such as ConDec [19]. In ConDec,
business processes are specified following an open and declarative approach:
rather than completely fix the control flow among activities, ConDec fo-
cuses on the (minimal) set of constraints that must be satisfied during the
execution, providing an high degree of flexibility.

Although declarative technologies improve readability and modifiability,
and help reducing programming errors, what makes systems trustworthy and
reliable is formal verification. Since the temporal dimension plays in these
settings a fundamental role, a natural choice would be to model such systems
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using temporal logic specifications. In particular, ConDec models can be
represented as a conjunction of (propositional) Linear Temporal Logic (LTL,
[8]) formulae, each one formalizing a specific constraint [19]. By adopting
this choice, the problem of consistency and properties verification can be cast
as a satisfiability problem. This problem, in turn, is often reduced to model
checking [21]. However, it is well known that the construction of the input for
model checking algorithms takes a considerable amount of resources. This
is especially true if we consider declarative specifications such as the ones of
ConDec, in which the system is not represented as a Kripke structure, but
it is itself specified as an LTL formula; the translation of an LTL formula
into an automaton is exponential in the size of the formula, and it becomes
undecidable for variants of temporal logic with explicit time, such as Metric
Temporal Logic (MTL) with dense time [2].

Unlike model checking, by adopting an approach based on Logic Pro-
gramming (LP) a system’s specifications can be directly represented as a
logic formula, handled by a proof system with no need for a translation.
Hence, we address the verification problem by using Abductive Logic Pro-
gramming (ALP, [15]), and in particular the SCIFF framework [1]. SCIFF
is an ALP rule-based language and family of proof procedures for the spec-
ification and verification of event-based systems. The language describes
which events are expected (not) to occur when certain other events happen;
it includes universally and existentially quantified variables, constraint logic
programming (CLP) constraints and quantifier restrictions [3]. It has an
explicit representation of time, which can be modelled as a discrete or as a
dense variable, depending on the constraint solver of choice. Two different
proof procedures can be then used to verify SCIFF specifications, ranging
from run-time/a-posteriori compliance verification (SCIFF proof procedure)
to static verification of properties (g-SCIFF proof procedure).

We focus on the last point, addressing the problem of ConDec static
verification by (i) automatically translating ConDec models into the SCIFF
framework (following the mapping proposed in [17]) and (ii) using g-SCIFF
for reasoning. Via g-SCIFF, we can carry out a goal-directed verification
task, without having to generate an intermediate format (as in model check-
ing, where the formula specifying the system must be translated into an au-
tomaton). In this setting, abduction is used to generate (simulate) partially
specified execution traces which comply with the specification and entail
the goal of interest. The experiments we run to assess the performance of
g-SCIFF support our claims and motivate us to pursue this line of research.

The paper is organized as follows. In Section 2 we discuss the applica-
tion domains, proposing some examples of specification and verification in
the context of Business Process Management (BPM). Section 3 presents the
SCIFF framework and our verification method based on g-SCIFF. Section 4
evaluates it experimentally, in relation with other verification techniques.
Related work is described in Section 5. Finally, Section 6 discusses advan-
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tages and limits of g-SCIFF and concludes the paper.

2 Declarative Business Processes

If we skim through recent BPM, Web Service choreography, and Multi-
Agent System literature, we will find a strong push for declarativeness. In
the BPM context, van der Aalst and Pesic recently proposed a declara-
tive flow language (ConDec, [19]) to specify, enact, and monitor business
processes. Their claim is that declarative languages fit better with complex,
unpredictable processes, where a good balance between support and flexibil-
ity is of key importance. To motivate their claim, the authors show a simple
example with two activities, A and B, which can be executed multiple times
but exclude each other, i.e., if A is executed B cannot be executed and vice-
versa. In procedural languages, such as Petri nets, it is difficult to specify the
above process without introducing additional assumptions and choice points,
which lead to pointlessly complicate the model. This constraint can instead
be easily expressed via a simple declarative LTL expression: ¬(♦A ∧ ♦B).
This is also true for LP rules. For example, in SCIFF we could use two
ICs, H(a, T )⇒ EN(b, T ′) and H(b, T )⇒ EN(a, T ′), to define precisely the
intended model without introducing additional constraints.

2.1 A ConDec Example

In this article, we focus on the BPM domain. We use ConDec [19] as a
declarative process specification language. Fig. 1 shows the ConDec specifi-
cation of a payment protocol. Boxes represent instances of activities. Num-
bers (e.g., 0; N..M) above the boxes are cardinality constraints that tell how
many instances of the activity have to be done (e.g., never; between N and
M). Edges and arrows represent relations between activities. Double line ar-
rows indicate alternate execution (after A, B must be done before A can be
done again), while barred arrows and lines indicate negative relations (doing
A disallows doing B). Finally, a solid circle on one end of an edge indicates
which activity activates the relation associated with the edge. For instance,
the execution of accept advert in Fig. 1 does not activate any relation, be-
cause there is no circle on its end (a valid model could contain an instance of
accept advert and nothing else), register instead activates a relation with ac-
cept advert (a model is not valid if it contains only register). If there is more
than one circle, the relation is activated by each one of the activities that
have a circle. Arrows with multiple sources and/or destinations indicate
temporal relations activated/satisfied by either of the source/destination
activities. The parties involved—a merchant, a customer, and a banking
service to handle the payment—are left implicit.

In our example, the six left-most boxes are customer actions, payment
done/ payment failure model a banking service notification about the termi-
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Figure 1: A ConDec model.

nation status of the payment action, and send receipt is a merchant action.
The ConDec chart specifies relations and constraints among such actions.
If register is done (once or more than once), then also accept advert must
be done (before or after register) at least once. No temporal ordering is
implied by such a relation. Conversely, the arrow from choose item to close
order indicates that, if close order is done, choose item must be done at
least once before close order. However, due to the barred arrow, close order
cannot be followed by (any instance of) choose item. The 0..1 cardinality
constraints say that close order and send receipt can be done at most once.
1-click payment must be preceded by register and by close order, whereas
standard payment needs to be preceded only by close order (registration is
not required). After 1-click or standard payment, either payment done or pay-
ment failure must follow, and no other payment can be done, before either
of payment done/failure is done. After payment done there must be at most
one instance of send receipt and before send receipt there must be at least a
payment done. Sample valid models are: the empty model (no activity exe-
cuted), a model containing one instance of accept advert and nothing else,
and a model containing 5 instances of choose item followed by a close order.
A model containing only one instance of 1-click payment instead is not valid.

2.2 Static Verification of ConDec Models

Static verification helps to ensure safety and consistency of the model under
study at design time. If the outcome of the verification process is “bad”,
a new design cycle can be triggered, to the aim of properly revising the
model. In this respect, even if the verification process is not time-critical,
it is anyway an important aspect: the development of “correct” models
involves a constant interaction between static verification and the modeler.

Let us consider some examples of verification on the model. A first,
simple type of verification is known as checking for dead activities [20]. We
want to check whether a given activity, say send receipt, can be executed.
To verify the query, we add a 1..* cardinality constraint on the activity. If
the extended specification is unfeasible, it means that send receipt cannot
be executed in any possible valid model, indicating that probably there is
a mistake in the design. In our example, a verifier should return a positive
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Figure 2: Two sample queries: (a) existential and (b) universal properties.

answer, together with a sample valid execution, such as: choose item→ close
order → standard payment → payment done → send receipt, which amounts
to a proof that send receipt is not a dead activity.

Let us consider a more elaborated example. We want to check whether
it is still possible to have a complete transaction, if we add some constraints
such as: the customer does not accept to receive ads, and the merchant does
not offer standard payment. To verify the query, we add a 0 cardinality
constraint on accept advert and on standard payment, and a 1..* cardinality
constraint on send receipt, expressing that we want to obtain a complete
transaction (see Fig. 2(a))1. Such an extended specification is unsatisfiable:
a verifier should return a negative answer.

Let us now consider another complex property. A merchant wants to
make sure that during a transaction with 1-click payment a receipt is always
sent after the customer has accepted the ads. Since the query is, in this case,
universal, to verify we have extend the specifications with the query’s nega-
tion, which is an existential query (“does there exist a transaction executing
1-click payment in which accept advert is not executed before send receipt?”).
The negated query corresponds to the relations shown in Fig. 2(b). Given
the model, this query should succeed, since there is no temporal constraint
associated with accept advert, thus accept advert does not have to be exe-
cuted before send receipt in all valid models. The success of the existential
negated query amounts to a counterexample against the initial (universal)
query. A verifier should produce such a counterexample: choose item →
close order → register → 1-click payment → payment done → send receipt →
accept advert. That could lead a system designer to decide to improve the
model, e.g., by introducing an arrow from accept advert to send receipt.

Let us finally consider an example of a query with explicit time; we adopt
an extended ConDec notation, proposed in [17]. In such a notation, arrows
can be labeled with (start time, end time) pairs. The meaning of an arrow
labelled (Ts, Te) linking two activities A and B is: B must be done between
Ts and Te time units after A. A labeled barred arrow instead indicates that
B cannot be executed between Ts and Te time units after A. In this way
we can express minimum and maximum latency constraints. For instance,
the query depicted in Fig. 3 contains a (0, 12) labelled arrow, expressing
that B must occur after A and at most 12 time units after A (maximum
latency constraint on the sequence A . . . B). The query also contains a 0

1This technique is also used to avoid vacuous answers, in which the model is trivially
satisfied if nothing happens.
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Figure 3: Sample query concerning verification of properties on models with
explicit time.

cardinality constraint on accept advert (the customer does not accept ads).
The intuition behind the whole query is: “is there a transaction with no
accept advert, terminating with a send receipt within 12 time units as of close
order, given that close order, 1-click payment, and standard payment cause a
latency of 6, 3, and 8 time units?”. It turns out that the specification is
unfeasible, because the 0 cardinality constraint on accept advert rules out
the 1-click payment path, and the standard payment path takes more than 12
time units. A verifier should return failure.

3 The SCIFF Framework

SCIFF was initially proposed to specify and verify agent interaction proto-
cols [1], but it has also been successfully applied in the context of service
choreographies, electronic contracts and declarative business processes [17].

3.1 The SCIFF Language

SCIFF specifications consist of an abductive logic program, i.e., a triplet
〈P, IC,A〉 where P is a logic program (a collection of clauses), IC is a set
of integrity constraints (IC) and A is a set of abducible predicates. SCIFF
considers events as first class objects. Events can be, for example, send-
ing a message, or starting an action, and they are associated with a time
point. Events are identified by a special functor, H, and are described by
an arbitrary term (possibly containing variables). SCIFF uses ICs to model
relations among events and expectations about events. Expectations are
abducibles identified by functors E and EN. E are “positive” expectations,
and indicate events to be expected. EN are “negative” expectations and
model events that are expected not to occur. Happened events and ex-
pectations explicitly contain a time variable, to represent when the event
occurred/is expected (not) to occur. Event and time variables can be con-
strained by means of Prolog predicates or CLP constraints [14]; the latter are
especially useful to specify orderings between events and quantitative time
constraints (such as delays and deadlines). An IC is a forward body ⇒ head
rule which links happened events and expectations. Typically, the body con-
tains a conjunction of happened events, whereas the head is a disjunction of
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conjunctions of positive and negative expectations. ICs are interpreted in a
reactive manner; the intuition is that when the body of a rule becomes true
(i.e., the involved events occur), then the rule fires, and the expectations in
the head are generated by abduction. For example, H(a, T ) ⇒ EN(b, T ′)
defines a relation between events a and b, saying that if a occurs at time T ,
b should not occur at any time. Instead, H(a, T )⇒ E(b, T ′)∧ T ′ ≤ T + 300
says that if a occurs, then an event b should occur no later than 300 time
units after a. To exhibit a correct behavior, given a goal G and a triplet
〈P, IC,A〉, a set of abduced expectations must be fulfilled by correspond-
ing events. The concept of fulfillment is formally captured by the SCIFF
declarative semantics [1], which intuitively states that P, together with the
abduced literals, must entail G ∧ IC, positive expectations must have a cor-
responding matching happened event, and negative expectations must not
have a corresponding matching event.

3.2 Static Verification Using g-SCIFF

The SCIFF framework includes two different proof procedures to perform
verification. The SCIFF proof procedure checks the compliance of a narra-
tive of events with the specification, by matching events with expectations
during the execution (run-time monitoring) or a-posteriori. The g-SCIFF
proof procedure is a “generative” extension of the SCIFF proof procedure
whose purpose is to prove system properties at design time (static verifica-
tion), or to generate counterexamples of properties that do not hold.

The proof procedures are implemented in SICStus 4 and are freely avail-
able2. Their implementation features a unique design, that has not been
used before in other abductive proof procedures. First, the various transi-
tions in the operational semantics are implemented as constraint handling
rules (CHR, [10])3. The second important feature is their ability to inter-
face with constraint solvers: both with the CLP(FD) solver and with the
CLP(R) solver embedded in SICStus. The user can thus choose the most
suitable solver for the application at hand, which is an important issue in
practice. It is well known, in fact, that no solver dominates the other, and
we measured, in different applications, orders of magnitude of improvements
by switching solver. In this paper we discuss static verification, reporting
the results obtained with the CLP(R) solver, which is based on the simplex
algorithm, and features a complete propagation of linear constraints.

Existing formal verification tools rely on model checking or theorem prov-
ing. However, a drawback of most model checking tools is that they typically
only accommodate discrete time and finite domains. Moreover, the cardi-

2See http://lia.deis.unibo.it/sciff/
3Other proof procedures [5] have been implemented on top of CHR, but with a different

design: they map integrity constraints (instead of transitions) into constraint handling
rules. This choice gives more efficiency, but less flexibility.
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nality of domains impacts heavily on the performance of the verification
process, especially in relation to the production of a model consisting of a
state automaton. On the other hand, theorem proving in general has a low
level of automation, and it may be hard to use, because it heavily relies on
the user’s expertise [13]. g-SCIFF presents interesting features from both
approaches. Like theorem proving, its performance is not heavily affected
by domain cardinality, and it accommodates domains with infinite elements,
such as dense time. Similarly to model checking, it works in a push-button
style, thus offering a high level of automation.

In the style of [22], we do verification by abduction: in g-SCIFF, event
occurrences are abduced as well as expectations, in order to model all the
possible evolutions of the system being verified. In particular, the g-SCIFF
proof procedure is a transition system which inherits all the transitions of
the SCIFF proof procedure [1], adding a new transition called fulfiller. Ful-
filler states that if an expectation E(p, t) is not fulfilled, an event H(p, t) is
abduced. g-SCIFF uses fulfiller to generate narratives of events (“histories”)
starting from the specification (and the query of interest): abduction is used
to simulate executions of the system which comply with the specification and
entail the query. To do so, it applies the rule E(P, T )→ H(P, T ), which ful-
fills an expectation by abducing a matching event. Fulfiller is applied only
at the fix-point of the other transitions. SCIFF and g-SCIFF also exploit
an implementation of reified unification (a solver on equality/disequality of
terms) which takes into consideration quantifier restrictions [3] and variable
quantification. Histories are thus generated intensionally, and hypothetical
events can contain variables, possibly subject to CLP constraints.

Verification of properties is conducted as follows. An existential property
can be passed to g-SCIFF as a goal containing positive expectations: if the
g-SCIFF proof procedure succeeds in proving the goal, the generated history
proves that there exists a way to obtain the goal via a valid execution of the
activities. A universal property Q can be negated (as in model checking),
and then passed to g-SCIFF. If the g-SCIFF proof procedure succeeds in
finding a history which satisfies the negated property, such a history is a
counterexample against Q. The examples shown in Section 2.1 are correctly
handled by g-SCIFF. The first one (check for dead activity) completes in
10ms4, the second one (Fig. 2(a)), in 20ms, the third one (Fig. 2(b)) in
420ms, and the last one (Fig. 3) in 80ms.

4 Experimental Evaluation

A ConDec chart is a good starting point to compare two verification meth-
ods: satisfiability checking LTL formulas via model checking, and g-SCIFF.

4Experiments have been performed on a MacBook Intel CoreDuo 2 GHz machine.
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Indeed, the semantics of ConDec can be given both in terms of LTL
formulae [19, 17] and of SCIFF programs [17]. By adopting LTL, each Con-
Dec constraint is associated with a formula; the conjunction of all formulae
(“conjunction formula”) gives the semantics of the entire chart. In SCIFF
the approach is similar: each ConDec constraint is mapped to a set of ICs,
and the entire model is represented by the union of all ICs.

For example, the relation between accept advert and register corresponds
to the LTL formula (♦register)⇒ (♦accept advert) and to the following IC:

H(register, T )⇒ E(acceptAdvert, T ′).

The barred arrow from close order to choose item corresponds to the LTL
formula �(close order⇒ ¬(♦choose item)) and to the following IC:

H(closeOrder, T )⇒ EN(chooseItem, T ′) ∧ T ′ > T.

Finally, the relation between payment done and send receipt corresponds
to the LTL formula (�(payment done⇒ ♦send receipt))∧((♦send receipt)⇒
((¬send receipt)Upayment done)) and to the following two ICs:

H(paymentDone, T )⇒ E(receipt, T ′) ∧ T ′ > T

H(receipt, T )⇒ E(paymentDone, T ′) ∧ T ′ < T.

We run an extensive experimental evaluation to compare g-SCIFF with
model checking techniques. To the best of our knowledge, there are no
benchmarks on the verification of declarative business process specifications.
We created our own, starting from the sample model introduced in Sec-
tion 2.1, Fig. 1, and extending the standard payment activity as follows.
Instead of a single activity, standard payment consists of a chain of N activ-
ities in alternate succession:
start payment •⇒• step 1 •⇒• step 2 •⇒• . . . •⇒• step N •⇒• complete payment

in which every two consecutive steps are linked by an alternate succession
relation. Moreover, we model a possible failure at each of these steps (start
failure, step 1 failure, . . . ). This extension to the model is depicted in Fig. 4.
Additionally, we add a K..* cardinality constraint on action payment failure,
meaning that payment failure must occur at least K times. The new model
is thus parametric on N and K. We complicated the model in such a way to
stress g-SCIFF and emphasize its performance results in both favorable and
unfavorable cases.
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4.1 Verifying ConDec Models with g-SCIFF and Model Check-
ing Techniques

To verify ConDec models with g-SCIFF, we adopted the following method-
ology. Given a ConDec specification S and a query (negated, if the query is
universal) Q: (i) build a SCIFF specification which formalizes S, following
the translation described in [17], and do the same with Q; (ii) run g-SCIFF
with the translation ofQ as goal. If the query is entailed byQ, then g-SCIFF
generates an execution trace which complies with S and satisfies Q.

In the LTL setting, the problem of static verification is cast as a satis-
fiability problem, which in turn can be reduced to model checking [21]: (i)
map activities to boolean variables (1=execution); (ii) build a “conjunction-
formula” φ of S and Q, following the translation described in [19]; (iii) build
a universal model M, capable to generate all the activity execution traces;
(iv) model check ¬φ against M. If the model checker finds a counterex-
ample, φ is satisfiable and the counterexample is in fact an execution trace
satisfying both S and Q.

In order to choose a suitable model checker, we followed on the results
of an experimental investigation conducted by Rozier and Vardi on LTL
satisfiability checking [21], by which it emerges that the symbolic approach
is clearly superior to the explicit approach, and that NuSMV [6] is the best
performing model checker for the benchmarks they considered. We thus
chose to run our benchmarks to compare g-SCIFF with NuSMV5.

Unfortunately, the comparison could not cover all relevant aspects of the
language, such as some temporal aspect, because neither NuSMV nor any
other model checker cited in [21] offers all of the features offered by SCIFF.
As a future work, we plan to compare the performance of g-SCIFF against
that of other model checkers for MTL [2]. However, since existing MTL tools
seem to use classical model checking and not symbolic model checking, our
feeling is that g-SCIFF would largely outperform them on these instances.

4.2 Experimental Results

We compared g-SCIFF with NuSMV on two sets of benchmarks: (i) the
existential query presented in Section 2.1, Fig. 2(a)6; (ii) a variation of the
above, without the 0 cardinality constraint on std payment. Of the two
benchmarks, the first one concerns verification of unsatisfiable specifications
and the second one verification of satisfiable specifications. The latter re-
quires producing an example demonstrating satisfiability, which generally
increases the runtime. The input files are available on a Web site7. The

5It is worth noticing that explicit model checkers, such as SPIN, in our experiments
could not handle in reasonable time a ConDec chart such as the one we described earlier.

6The 0 cardinality constraint is set on the start payment activity.
7See http://www.lia.deis.unibo.it/research/climb/iclp08benchmarks.zip.
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K \N 0 1 2 3 4 5
First benchmark

0 0.01/0.20 0.02/0.57 0.03/1.01 0.02/3.04 0.02/6.45 0.03/20.1
1 0.02/0.35 0.03/0.91 0.03/2.68 0.04/4.80 0.04/8.72 0.04/29.8
2 0.02/0.46 0.04/1.86 0.05/4.84 0.05/10.8 0.07/36.6 0.07/40.0
3 0.03/0.54 0.05/2.40 0.06/8.75 0.07/20.1 0.09/38.6 0.10/94.8
4 0.05/0.63 0.05/2.34 0.08/9.51 0.10/27.1 0.11/56.63 0.14/132
5 0.05/1.02 0.07/2.96 0.09/8.58 0.12/29.0 0.14/136 0.15/134

Second benchmark
0 0.02/0.28 0.03/1.02 0.04/1.82 0.05/5.69 0.07/12.7 0.08/37.9
1 0.06/0.66 0.06/1.67 0.07/4.92 0.08/9.21 0.11/17.3 0.15/57.39
2 0.14/0.82 0.23/3.44 0.33/8.94 0.45/22.1 0.61/75.4 0.91/72.86
3 0.51/1.01 1.17/4.46 1.87/15.87 3.77/41.2 5.36/79.2 11.4/215
4 1.97/1.17 4.79/4.43 10.10/17.7 26.8/52.2 61.9/116 166/268
5 5.78/2.00 16.5/5.71 48.23/16.7 120/60.5 244/296 446/259

Table 1: Results of the benchmarks (SCIFF/NuSMV), in seconds.

Figure 5: Charts showing the ratio NuSMV/g-SCIFF runtime, in Log scale.

runtime resulting from the benchmarks is reported in Table 4.2. Fig. 5
shows the ratio NuSMV/g-SCIFF runtime, in Log scale.

It turns out that g-SCIFF outperforms NuSMV in most cases, up to
several orders of magnitude. This is especially true for the first benchmark,
for which g-SCIFF is able to complete the verification task always in less
than 0.15s, while NuSMV takes up to 136s. For the second benchmark,
g-SCIFF does comparatively better as N increases, for a given K, whereas
NuSMV improves w.r.t. g-SCIFF and eventually outperforms it, for a given
N, as K increases. This is the case, because NuSMV’s runtime is somehow
proportional to the size of the LTL formula to be checked, whereas the
runtime of g-SCIFF, which follows a “simulation by abduction” approach,
heavily depends on the type of query it has to answer to, rather than on its
length, and on the order of clauses and on the type of functors used in the
SCIFF program. This suggests that suitable heuristics that choose how to
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explore the search tree could help improve the g-SCIFF performance. This
is subject for future research.

5 Related Work

We discuss other related approaches to verification, starting by those us-
ing ALP. Alessandra Russo et al. [22] exploit abduction for verification of
declarative specifications expressed in terms of required reactions to events.
They use the event calculus (EC) and include an explicit time structure.
Global systems invariants are proved by refutation, and adopting a goal-
driven approach similar to ours. The main difference concerns the under-
lying specification language: while Russo et al. rely on a general purpose
ALP proof procedure which handles EC specifications and requirements, we
adopt a language which directly captures the notion of occurred events and
expectations, whose temporal relationships are mapped on CLP constraints.

Another system aimed at proving properties of graphical specifications
translated to logic programming formalisms is West2East [4], where inter-
action protocols modeled in Agent UML are translated to a Prolog program
representing the corresponding finite state machine, whose properties can
be verified exploiting the Prolog meta-programming facilities. However, the
focus of that work is more on agent oriented software engineering, rather
than verification: the system allows (conjunctions of) existential or univer-
sal queries about the exchanged messages or guard conditions, and it is not
obvious how to express and verify more complex properties.

In [9], Fisher and Dixon propose a clausal temporal resolution method to
prove satisfiability of arbitrary propositional LTL formulae. The approach
is two-fold: first, the LTL formula is translated into a standard normal form
(SNF), which preserves satisfiability; then a resolution method, encompass-
ing classical as well as temporal resolution rules, is applied until either no
further resolvents can be generated or false is derived, in which case the
formula is unsatisfiable. From a theoretical point of view, clausal temporal
resolution always terminates, while avoiding the state-explosion problem;
however, the translation to SNF produces large formulas, and finding suit-
able candidates for applying a temporal resolution step makes the resolution
procedure exponential in the size of the formula. Furthermore, in case of
satisfiability no example is produced.

Differently from the approach here presented, in other works LP and CLP
have been exploited to implement model checking techniques. Of course,
since they mimic model checking, they inherit the same drawbacks of classi-
cal model checkers when applied for the static verification of ConDec models.

For example, Delzanno and Podelski [7] propose to translate a procedural
system specification into a CLP program. Safety and liveness properties,
expressed in Computation Tree Logic, are checked by composing them with
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the translated program, and by calculating the least and the greatest fix-
point sets. In [11], Gupta and Pontelli model the observed system through
an automaton, and convert it into CLP. As in our approach, they cannot
handle infinite sequences without the intervention of the user.

6 Discussion and Conclusion

A most prominent feature and, in our opinion, a major advantage of the
approach we present,is the language, as we have discussed earlier. It is
declarative and it accommodates explicit time and dense domains. A soft-
ware engineer can specify the system using a compact, intuitive graphical
language such as ConDec, then the specification is mapped automatically to
a SCIFF program. Using g-SCIFF, It is possible to verify the specification’s
properties. Using the SCIFF proof procedure it is possible to monitor and
verify at run-time that the execution of an implemented system complies
with the specifications. This eliminates the problem of having to produce
two sets of specifications (one for static and one for run-time verification)
and of verifying that they are equivalent.

Apart from the language, the main difference with model checking is
that queries are evaluated top-down, i.e., starting from a goal. No model
needs to be generated, which eliminates a computationally expensive step.
By going top-down, the verification algorithm only considers relevant por-
tions of the search space, which can boost performance. On the downside,
the performance strongly depends on the way SCIFF programs are written
w.r.t. the property. Due to the left-most, depth-first search tree exploration
strategy inherited from Prolog by SCIFF, the order of clauses influences the
performance, and so does the ordering of atoms inside the clauses. However,
this does not impact on soundness.

A major drawback of our approach is that it does not always guarantee
termination, as opposed to unbounded model checkers, which typically guar-
antee termination even when checking formulae producing models of infinite
length, such as �(a→ ♦a). In general, g-SCIFF would not terminate in such
a case - although it does terminate if it is used with finite domains, such as
discrete time and limited time span. However, g-SCIFF implements a work-
around to address this deficiency, similar to the one used in bounded model
checking. In particular, g-SCIFF can be invoked in bounded mode, which
restricts the number of actions generated by g-SCIFF. In this way, g-SCIFF
does not guarantee completeness in the general case, but it is still able to
say that, for example, a query fails with models consisting of at most N
actions. Another technique implemented by SCIFF is iterative deepening,
which can be used to address similar cases at the cost of a worse perfor-
mance. However, we emphasize that we are proposing g-SCIFF for use in
application domains in which interactions are expected to eventually ter-
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minate. A typical ConDec model does not contain infinite loops—at least,
not intentionally. In particular, all ConDec relations individually produce
loop-free SCIFF programs, and specifications such as the one we presented
earlier do not have this problem. Thus, although a combination of ConDec
relations can indeed produce infinite loops, we can consider them to be un-
common cases which can be identified through a pre-processing phase and
verified by using g-SCIFF with iterative deepening. A promising approach
to deal with infinite computations during verification seems to be Coinduc-
tive Logic Programming [12], which extends the usual operational semantics
of logic programming to allow reasoning over infinite and cyclic structures
and properties. It might be, therefore, a useful approach to deal with mod-
els which lead to infinite g-SCIFF computations. This issue, together with
a more extensive theoretical and experimental evaluation, will be our next
research direction.
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