
Computing #2-SAT of Grids, Grid-Cylinders and
Grid-Tori Boolean Formulas

C. Guillén1,2, A. López López1, and G. De Ita2

1 Coordinación de Ciencias Computacionales
Inst. Nac. de Astrof́ısica Óptica y Electrónica

Tonantzintla Pue. 72840, México
cguillen@inaoep.mx

2 Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla

14 Sur y Av. Sn. Claudio Edif 135 Puebla, México
allopez,deita@inaoep.mx

Abstract

We present an adaptation of transfer matrix method for signed
grids, grid-cylinders and grid-tori. We use this adaptation to count
the number of satisfying assignments of Boolean Formulas in 2-CNF
whose corresponding associated graph has such grid topologies.

1 Introduction

The transfer matrix method is a general technique which has been used
to find exact solutions for a great variety of problems. In particular, have
been developed techniques, based on this method, to count structures in a
grid graph Gn,m, e.g., spanning trees, Hamiltonian cycles, independent sets,
acyclic orientations, k-coloring, and so on [1, 2, 7, 9]. In the case of others
grid topologies, as grid-cylinders and grid-tori, there exists little work done
on counting structures. In [9] the transfer matrix technique is used, with
some modifications, to count structures in fixed height grid-cylinders and
tori. In the case of counting satisfying assignments of Boolean formulas
with this type of grid topologies, the work is null as far as we know.

In almost all cases of counting structures in grid graphs, the technique
used follows a transfer matrix formulation. For example, Calkin and Wilf
[2] used this method for computing the number I(Gn,m) of independent sets
of a grid graph Gn,m and Golin in [9] count the same number (and others
structures) but in grid-cylinders and grid-tori.

The number of independent sets in a grid graph, problem denoted as
I(Gm,n), is closely related to the “hard-square model” used in statistical
physics and, of particular interest is the so-called “hard-square entropy con-
stant” defined as limm,n→∞ I(Gm,n)1/m·n [1]. Applications also include for
instance tiling and efficient coding schemes in data storage [12].

It is well known that the number of satisfying assignments (models)
of a monotone formula F in two conjunctive normal form 2-CNF, which

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

is a propositional formula formed by a conjunction of disjunctions of two
nonnegative literals, is related with the number of independent sets of the
constrained undirected graph of the formula [11, 9]. The number of mod-
els of a Boolean formula F is denoted as #SAT(F) and the computation
of #SAT(F) for formulas in 2-CNF, denoted as #2-SAT, is a classic #P-
complete problem.

There is a significant amount of works on the design of algorithms for
solving #SAT, #2-SAT and #3-SAT [6, 16, 10, 3, 4, 8, 5, 15]. Most of
them are based on branch-and-bound techniques, for example, applying the
recursive decomposition of the input formula based on the classical Davis
and Putnam division rule [8, 4].

Regarding to #2-SAT problem, considering formulas with n variables,
the better time bounds than the trivial O(2n) have been achieved in the
works of Dahllöf et al. [4], Fürer [8] and Wahlströn [15]. Wahlströn uses
a refinement of the method of analysis, where is extended the concept of
compound measures to multivariate measures in which a leading running
time of O(1.2377n) has obtained, for weighted formulas in 2-CNF.

An important line of research is related to the determination of the
constraints on the 2-CF formulas which allow us to compute #2-SAT in
polynomial time. In this address, there are few general results, one of them
is due to Vadhan [14] who showed that #2-SAT is solved in polynomial
time for monotone 2-CNF where all variables appear twice at the most.
Roth [11] generalizes the previous results for non only the monotone case,
but continuing to consider two ocurrence per variable at the most. In this
paper, we extend the class of formulas in 2-CNF in which, counting the
number of satisfying assignments can be done in polynomial time.

On the other hand, Bubbley has shown that #2µ-SAT (conjunction of
clauses without bound in its length and where each variable may appear at
most twice) is a #P-Complete problem [13].

In order to extend the transfer matrix method for considering any kind
of 2-CNF’s we have to deal with grid graphs with signed edges. In the case
of counting models of Boolean formulas with this type of grid topologies,
the work is null as far as we know. In this article, we adapt the transfer
matrix method considering three classes of grid topologies: grid graphs,
grid-cylinders and grid-tori obtained from 2-CNF’s not restricted to the
monotone case, and we show how to compute the number of models for
these classes of formulas. The complexity of our method when counting
models in structures of fixed height is polynomial.

2 Preliminaries

For k and l integers such that k < l, we denote the set {k, k + 1, ..., l} by
[k, l]. The Euclidean distance between points u and v in Euclidean 2-space

2

a) b) c) d)

Figure 1: a) Grid, b), c) grid-cylinders and d) grid-tori.

is denoted by d(u, v).
A grid graph of size m × n is a graph Gn,m with vertex set V (n,m) =

[0, n]× [0,m] and edge set E(n,m) = {(u, v) ∈ V 2(n,m) : d(u, v) = 1}. Let
E1(n,m) = ({0} × [0,m]) × ({n} × [0,m]) and E2(n,m) = ([0, n] × {0}) ×
([0, n]× {m}) be two sets of edges.

A grid-cylinder of size m×n is a graph C(n,m) with vertex set V (n,m)
and edge set EC(n,m) = E(n,m)∪E′(n,m), where E′(n,m) ∈ {E1(n, m),
E2(n,m)} (see figures 1b and 1c). A grid-tori of size m × n is a graph
T (n, m) with the same vertex set V (n,m) but its edge set is ET (n,m) =
E(n,m) ∪ E1(n,m) ∪ E2(n,m) (see figure 1d).

A set I ⊆ V is called an independent set if no two of its elements are
joined by an edge. We describe the method used by Calkin as follows.

Let I(Gn,m) be the number of independent sets of Gn,m, and let Cm be
the set of all (m + 1)-vectors v of 0′s and 1′s without two consecutive 1′s
(the number of these vectors is Fibm+2, the (m + 2)-th Fibonacci number).
Let Tm be an Fibm+2×Fibm+2 symmetric matrix of 0′s and 1′s whose rows
and columns are indexed by the vectors of Cm. The entry of Tm in position
(u,v) is 1 if the vectors u,v are orthogonal, and is 0 otherwise, Tm is called
the transfer matrix for Gn,m. Then, I(Gn,m) is the sum of all entries of
the n-th power matrix Tn

m, i.e., I(Gn,m) = 1tTn
m1, where 1 is the (Fibm+2)-

vector whose entries are all 1′s. For example, if m = 2 and n = 3 we have
that C2 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)},

T2 =

1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0

and T 3
2 =

17 12 13 12 9
12 7 10 8 5
13 10 9 10 8
12 8 10 7 5
9 5 8 5 3

,

therefore I(G(2, 3)) = 1T 3
2 1 = 227.

A Boolean formula F is called monotone when each literal appearing in
F occurs with just one of its signs. Given a monotone Boolean formula F in
2-conjunctive normal form (2-CNF), we can associate an undirected graph
GF = (V, E), called its constrained graph, where V is the set of variables of
F and two vertices of V are connected by an edge in E if they belong to the
same clause of F . Conversely, given an undirected graph G = (V, E), we

3

can associate a monotone 2-CNF formula FG with variables V , and where
FG =

∧
(u,v)∈E(u ∨ v). We say that a 2-CNF F is a cycle, path, tree, grid,

grid-cylinder or a grid-tori formula if its constrained graph is a cycle, path,
tree, grid, grid-cylinder or a grid-tori, respectively.

3 Extending the Transfer Matrix Method

In order to extend the transfer matrix method for considering any kind of
2-CNF’s we have to deal with grid graphs with signed edges. In this case,
the associated graph of a formula F is a graph GF = (V,E) with labels on
the edges, where V is the set of variables appearing in F , and a clause (l∨ l′)
of F determines an ordered pair (s1, s2) of signs assigned as the labels of
the edge connecting the variables appearing in l and l′. The signs s1 and s2

are related to the signs of the literals l and l′ respectively. For example, the
clause (¬x ∨ y) determines the labelled edge: “x− +y” which is equivalent
to the edge “y+ −x”.

Some authors had considered the signs of the literals in the clauses of
a 2-CNF F by using orientation of the edge corresponding to the clause
[12, 13], and then the problem of counting models of F is seen as counting
the number of orientations in its respective constrained graph, which has no
sink.

A graph with labelled edges on a set A is a triplet G = (V, E, ψ), where
(V,E) is a graph, and ψ is a function with domain E and range A. The
valuation ψ(e) is called the label of the edge e ∈ E.

We denote S = {+,−}, S̄ = {±,∓} and Ŝ = S∪S̄. Let Gn,m = (V, E, ψ)
be a grid graph with labelled edges on S2. Let x and y be nodes in V . If
e = {x, y} is an edge and ψ(e) = (s, s′), then s (s′) is called the adjacent
sign to x (y), see figure 2.

s s’
x yj=j’

i i’
a)

x

y

j

j’

i=i’b)

s
s’ x

s’

a)

x

b)

o

so

s’o

so

s1

s’1

Fig. 2: Adjacent sign to x(y) Fig. 3: Incident edges on the node x

Let e = ((i, j), (i′, j′)) be an edge of a grid graph Gn,m, if i = i′ and j 6= j′,
e is called a column-edge (see figure 2b), and if i 6= i′ and j = j′, e is called
a row-edge (see figure 2a).

If x is a node of Gn,m, then either x has one incident column-edge, or x
has two incident column-edges. If x has one incident column-edge e0 whose
label is (s0, s

′
0), then we define sgnc(x) = s0, where s0 is the adjacent sign

to x (see figure 3a).

4

If x has two incident column-edges e0 and e1 with labels (s0, s
′
0) and

(s1, s
′
1) respectively (see figure 3b), we define sgncc : V → Ŝ as follows

sgncc(x) =

+ if (s0, s1) = (+, +),
− if (s0, s1) = (−,−),
± if (s0, s1) = (+,−),
∓ if (s0, s1) = (−, +).

In general, we can consider the function sgn : V → Ŝ as sgn(x) =
sgnc(x) if x has one incident column-edge or sgn(x) = sgncc(x) if x has two
incident column-edges.

+ +

+
- - +

-
-

x0 y0

y1

+
+

y2x2

x1

+
+

+ +

z0

z1

z2

+ +

- -+ +

+
+

+
+

 G 2,0,1
 G

 2,1,2

x

x

x

0

1

2

y

y

y

y

y

y

z

z

z

0 0 0

1 1 1

2 2 2

+
-

-
-

+ + - -

-
-

+
+

+ + - +

+
+

+ +

+
+

+
+

+
+

+ +

a) b)

Fig. 4: a) Grid G2,2, b) Subgrids G2,0,1, G2,1,2

Given Gn,m = (V, E, ψ) a grid graph with labelled edges on S2, we
consider for k = 0, ..., n−1 the sub-grid graph with labelled edges Gm,k,k+1 =
(Vk, Ek, ψk), where Vk = V ∩([k, k+1]×[0,m]), Ek = {(u, v) ∈ V 2

k : d(u, v) =
1} and ψk = ψ |Ek

the restriction of ψ to Ek.
Notice that Gm,k,k+1 specifies a grid of two columns and m+1 rows.

If x is a node in Gm,k,k+1, then x has only one incident row-edge e. For
k = 0, . . . , n − 1 we define sgnk : Vk → S as sgnk(x) = s, where s is the
adjacent sign of x on the incident row-edge e.

For example, let G2,2 be the grid graph illustrated in figure 4a. Then
sgn(x) = +, for x ∈ {x0, x2, y2, z0, z1, z2}, sgn(y0) = − and sgn(y1) =
sgn(x1) = ∓. In G2,0,1, we have sgn0(x) = + for all x ∈ V0. In G2,1,2,
sgn1(x) = + for x ∈ {y2, z1, z2} and sgn1(x) = − for x ∈ {y0, y1, z0} (see
figure 4b).

Given a vector v = (v0, v1, . . . , vm) ∈ {0, 1}m+1 and a string s = s0 . . . sm

of signs in Ŝ, for m ≥ 0, we define the family of operators ϕs : {0, 1}m+1 →
{0, 1}p, (m + 1 ≤ p ≤ 2m + 2) as ϕs(v) = (s0v0, . . . , smvm), where

sjvj =

vj if sj = +,
v̄j if sj = −,

(vj , v̄j) if sj = ±,
(v̄j , vj) if sj = ∓.

(1)

for j = 0, . . . , m. For v ∈ {0, 1}, v̄ denotes 1− v and v̄ denotes (v̄0, ..., v̄m).
For instance,

ϕ+,−,±,∓,−(1, 0, 1, 1, 0) = (+1,−0,±1,∓1,−0) = (1, 1, (1, 0), (0, 1), 1).

5

In general, we can omit the internal parenthesis given the associative prop-
erty of the cartesian product. In particular, the vector (1, 1, (1, 0), (0, 1), 1)
can be seen as (1, 1, 1, 0, 0, 1, 1).

Let Fm be the set of all (m+1)-vectors v of 0′s and 1′s, and let Cm ⊂ Fm

be the set of all (m + 1)-vectors v of 0′s and 1′s, such that v does not have
two consecutive 1′s. The cardinality of Cm (denoted by |Cm|) is Fibm+2 (the
(m + 2)-th Fibonacci number), while |Fm| = 2m+1. Given s = s0s1 · · · sm

a string of signs in Ŝ, we define Fs
m = {e ∈ Fm : ϕs(e) ∈ Cm+`}, where

` = |{s ∈ {s0, ..., sm} : s ∈ S̄}|.

Remark 1. Notice that Cm ⊆ Fm and that the equality holds when
si = + for all i = 0, ..., m. Furthermore, if there exists i ∈ {0, ..., m} such
that si ∈ Ŝ, then |Fs

m| < |Cm|.

Let Gn,m be a grid graph of size m×n with labelled edges on the set S2,
we assume that xk

0, . . . , x
k
m and xk+1

0 , . . . , xk+1
m are the nodes of the k − th

and (k +1)− th columns respectively of Gn,m, 0 ≤ k < n (or columns 0 and
1 of Gm,k,k+1 respectively).

For j = k, k+1, let sj = sj
0s

j
1 · · · sj

m and τ j = τ j
0τ j

1 · · · τ j
m be two string of

signs, such that sj
i = sgn(xj

i) and τ j
i = sgnk(x

j
i) for i = 0, · · · ,m. Following

the idea proposed in [2], we define a matrix Tk = Tm,k, the transfer matrix
from column k to the column k +1 of Gn,m as follows. Tk is an | Fsk+1

m | × |
Fsk

m | matrix of 0′s and 1′s whose rows and columns are indexed by vectors
(v,u) of Fsk+1

m × Fsk

m . The entry of Tk in position (v,u) is 1 if the vectors
ϕτk(u) and ϕτk+1(v) are orthogonal, and is 0 otherwise.

Notice that if sj
i and τ j

i are positive signs for i = 0, · · · ,m, j = k, k + 1,
then Tk is the transfer matrix used in the classic transfer method [2].

For example, if G2,2 is the grid graph with labelled edges as it is illus-
trated in figure 4. For G2,0,1, we have that s0 = + ∓ +, s1 = − ∓ + and
τ0 = τ1 = + + +, then F+∓+

2 = {u1, · · · ,u4} and F−∓+
2 = {v1,v2,v3,v4},

where u1 = (0, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (1, 1, 0), v1 =
(1, 0, 0), v2 = (0, 1, 0), v3 = (1, 0, 1) and v4 = (1, 1, 0). The transfer matrix
T0 = (aij)4×4, is a 4 × 4 matrix determined, for 1 ≤ i, j ≤ 4, as aij = 1, if
ϕτ1(vi) · ϕτ0(uj) = 0 and aij = 0 otherwise. Since τ0 = τ1 = + + +, we
have ϕτ1(vi) = vi and ϕτ0(uj) = uj. Then

T0 =

1 1 1 0
1 0 1 0
1 1 0 0
1 0 1 0

 (2)

For G2,1,2 that is also depicted in figure 4, we have s1 = − ∓ +, s2 =
+ + +, τ1 = − − + and τ2 = − + +, then F−∓+

2 = {µ1,...,µ4} and
F+++

2 = {ν1,...,ν5}, where µ1=(1,0,0), µ2=(0,1,0), µ3=(1,0,1), µ4=(1,1,0),

6

ν1=(0,0,0), ν2=(1,0,0), ν3=(0,1,0), ν4=(0,0,1) and ν5=(1,0,1). Then,

ϕ−−+(F−∓+
2) = {(0, 1, 0), (1, 0, 0), (0, 1, 1), (0, 0, 0)}

and ϕ−++(F−∓+
2) = {(1, 0, 0), (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 0, 1)}.

The transfer matrix T1 = (bij)5×4, is such that, for 1 ≤ i ≤ 5 and
1 ≤ j ≤ 4, bij = 1, if ϕ−++(νi) ·ϕ−−+(µj) = 0 and bij = 0 otherwise. Then

T1 =

1 0 1 1
1 1 1 1
0 0 0 1
1 0 0 1
1 1 0 1

(3)

In the case, not necessarily monotone, of a formula F having a con-
strained grid graph Gn,m with labelled edges on S2 and transfer matrices
T0, . . . , Tn−1, we conclude that the sum of all entries of the product ma-
trix Tn−1 · · ·T0 is the number of satisfying assignment of F . This fact is
expressed in the following theorem.

Theorem 1. Let F be a grid formula such that its constrained graph is Gn,m

(1 ≤ n) with labelled edges on S2, then #SAT (F) is given by the sum of all
entries of the product matrix Tn−1 · · ·T0, where Tk is the transfer matrix of
the two consecutive columns: k and k + 1 of Gn,m, k = 0, ..., n− 1.

Before detailing the proof, we consider the following example and obser-
vations.

Example 1. Let F = (x0∨y0)∧(¬y0∨¬z0)∧(z0∨z1)∧(z1∨z2)∧(z2∨y2)∧
(y2∨x2)∧(x2∨x1)∧(¬x1∨x0)∧(x1∨y1)∧(¬y1∨z1)∧(¬y1∨¬y0)∧(y1∨y2).The
constrained graph of F is the grid graph G2,2 with labelled edges depicted in
Figure 3. Then, from last example, T0 and T1 are the transfer matrices given
in (2) and (3) respectively. Now, we have that the product matrix T1T0 is
the following

T1T0 =

3 2 2 0
4 2 3 0
1 0 1 0
2 1 2 0
3 1 3 0

therefore, #SAT(F) = 30.

If Fn,m denotes a grid formula having as constrained graph a grid Gn,m,
for n > 0, we can write

Fn,m = (
n∧

i=0

Ci) ∧ (
n−1∧

`=0

R`) (4)

7

where

Ci =
m−1∧

k=0

(ηi
2kx

i
k ∨ ηi

2k+1x
i
k+1) (5)

ηi
q ∈ S for q = 0, ..., 2m− 1,

R` =
m∧

j=0

(τ2`
j x`

j ∨ τ2`+1
j x`+1

j) (6)

τ r
j ∈ S for j = 0, ..., m, r ∈ {2`, 2` + 1}. Here, the formulas Ci and R` are

called column-formula and row-formula respectively.

Notice that for n,m > 0

Fn,m = Fn,m−1 ∧ Cn ∧Rn−1, Fm,0 = C0, F0,n = R0. (7)

For i = 0, ..., n− 1, we define

Fm,i,i+1 = Ci ∧ Ci+1 ∧Ri (8)

Note that

Fn,m =
n−1∧

i=0

Fm,i,i+1 (9)

If φ : {xi
0, . . . , x

i
m} → {0, 1} is an assignment of values for the variables

of Ci (partial assignments of the variables of Fn,m), this is denoted by the
(m + 1)-vector (φ(xi

0), ..., φ(xi
m)). That is, an assignment for the variables

of Ci can be seen as a vector in {0, 1}m+1. Observe that, the assignments
of the variables of Fn,m can be considered as a matrix of n columns formed
by the assignments for the variables of C0, ..., Cn.

For i = 0, ..., n, let ξi
0 = ηi

0, ξi
m = ηi

2m−1 and ξi
q = sgn(xi

q) for q =
1, ..., m− 1. Also, notice that for v ∈ {0, 1}

ξi
qv =

{
ηi
2q−1v = ηi

2qv if ηi
2q−1 = ηi

2q,

(ηi
2q−1v, ηi

2qv) otherwise.
(10)

To prove the theorem 1, first, we characterize the partial assignments of
the variables of Fn,m such that satisfies each column-formula Ci (lemma 1).
Second, we characterize the pairs of assignments that satisfies the formula
(8), i.e. satisfies two consecutive column-formulas Ci, Ci+1 and the respec-
tive row-formula Ri (lemma 2). Finally, we prove that all matrix of partial
assignments derived from the lemmas 1 and 2, satisfies the formula Fn,m.

Next, for simplicity we omit the superindex i of vi
j , x

i
j , η

i
j , τ

i
j and ξi

j .

Lemma 1. The vector u ∈ {0, 1}m+1 satisfies the formula (5) iff u ∈
Fξ0···ξm

m .

8

Proof. By definition, it is clear that ϕξ0,...,ξm(u) ∈ Fm+k. Now, if
u = (u0, ..., um) satisfies the formula (5), then (η2`u` ∨ η2`+1u`+1) = 1 for
all ` ∈ {0, ..., m− 1}, that is equivalent to (η2`u`, η2`+1u`+1) 6= (1, 1). From
(10) we obtain

(ξ`u`, ξ`+1u`+1) =

(η2`u`, η2`+1u`+1)
if η2`−1 = η2` and η2`+1 = η2`+2,

(η2`u`, η2`+1u`+1, η2`+2u`+1)
if η2`−1 = η2` and η2`+1 6= η2`+2,

(η2`−1u`, η2`u`, η2`+1u`+1)
if η2`−1 6= η2` and η2`+1 = η2`+2,

(η2`−1u`, η2`u`, η2`+1u`+1, η2`+2u`+1)
if η2`−1 6= η2` and η2`+1 6= η2`+2.

for all ` ∈ {0, ...,m− 1}. It is straightforward to verify that (ξ`u`, ξ`+1u`+1)
does have no two consecutive 1’s, for example, in the third case, the condi-
tions (η2`u`, η2`+1u`+1) 6= (1, 1) and η2`−1 6= η2` imply that (η2`−1u`, η2`u`,
η2`+1u`+1) does not have two consecutive 1′s. Therefore, (ξ0u0, ..., ξmum) =
ϕξ0,...,ξm(u) does not have two consecutive 1′s, i.e. ϕξ0,...,ξm(u) ∈ Cm+k.

Suppose that ϕξ0,...,ξm(u) ∈ Cm+k, for ` = 0, ..., m then (ξ`u`, ξ`+1u`+1)
does not have two consecutive 1′s. The vector u satisfies the column-
formula Ci (equation (5)), otherwise, there is ` ∈ {0, ...,m − 1} such that
η2`u` ∨ η2`+1u`+1 = 0, then η2`u` = 1 and η2`+1u`+1 = 1, from (10)
we have ξ`u` ∈ {1, (η2`−1u`, 1)} and ξ`+1u`+1 ∈ {1, (1, η2`+2u`+1)}. Then
(ξ`u`, ξ`+1u`+1) has two consecutive 1′s. ¤

For all i = 0, ...,m, we denote the strings ξi
0, ..., ξ

i
m and τ i

0, ..., τ
i
m by ξi

and τ i respectively.

Lemma 2. The pair (u,v) ∈ {0, 1}2m+2 satisfies Fm,i,i+1 iff (u,v) ∈ Fξi

m ×
Fξi+1

m and ϕτ2i(u) · ϕτ2i+1(v) = 0.

Proof. Suppose that u = (u0, ..., um) and v = (v0, ..., vm) are such
that (u,v) satisfies Fm,i,i+1. From lemma 1, u ∈ Fξi

m and v ∈ Fξi+1

m , we
must prove that ϕτ2i(u) · ϕτ2i+1(v) = 0. By hypothesis τ i

juj ∨ τ i+1
j vj = 1

for all j = 0, ..., m, then τ i
juj ∧ τ i+1

j vj = 0 for all j = 0, ..., m, therefore
ϕτ2i(u) · ϕτ2i+1(v) = 0.

If u ∈ Fξi

m and v ∈ Fξi+1

m , from lemma 1, u satisfies Ci and v satis-
fies Ci+1. Now, if ϕτ2i(u) · ϕτ2i+1(v) = 0, then τ i

juj · τ i+1
j vj = 0 for all

j = 0, ..., m, hence τ i
jui ∨ τ i+1

j vj = 1 for all j = 0, ...,m. Therefore (u,v)

9

satisfies the row-formula Rj (equation (6)) for j = 0, ..., m. ¤

Remark 2. From previous lemma we have 1tTi1 = #SAT (Fm,i,i+1),
where Ti is the transfer matrix of the column i to the column i + 1 of Gn,m

(the constrained graph of Fn,m).

Finally, we prove the theorem 1.

Proof (Theorem 1). From equation (9), it is clear that the vector
(u0, ...,un) ∈ {0, 1}(n+1)(m+1) satisfies the formula Fn,m iff (ui,ui+1) sat-
isfies Fm,i,i+1 for i = 0, ..., n− 1. By lemma 2, (ūi, ūi+1) ∈ Fξi

m ×Fξi+1

m and
ϕτ2i(u)·ϕτ2i+1(v) = 0 for i = 0, ..., n−1. Let ai

li+1li
be the entry of the trans-

fer matrix Ti in the position (ūi+1, ūi) ∈ Fξi+1

m ×Fξi

m . Then, by definition of
Ti and previous analysis, (u0, ...,un) ∈ {0, 1}(n+1)(m+1) satisfies the formula
Fn,m iff (ū0, ..., ūn) ∈ Fξ0

m × · · · × Fξn

m and an−1
lnln−1

· · · a0
l1l0

= 1. Therefore

#SAT (Fn,m) is the cardinality of the set {(ū0, · · · , ūn) ∈ Fξ0

m × · · · × Fξn

m :
an−1

lnln−1
· · · a0

l1l0
= 1}.

Taking into account all the terms an−1
lnln−1

· · · a0
l1l0

= 0, we obtain

#SAT (Fn,m) =
∑

(l0,...,ln)∈I0×···×In
an−1

lnln−1
· · · a1

l2l1
· a0

l1l0
= 1tTn−1 · · ·T01,

where Ik = {0, ..., rk}, rk =| Fξk

m | for k = 0, ..., n.¤

Remark 3. Note that T = (Tn−1Tn−2 . . . T0) = (αi,j)rn×r0 is a rn × r0-
matrix, where αi,j is the number of models of Fn,m with ūi ∈ Fξ0

m and
ūj ∈ Fξn

m fixed.

4 Counting Models on Grid-Cylinders and Grid-
Tori

In this section, we consider grid-cylinder or a grid-tori formulas. We are
interested in counting models for formulas with these classes of grid topolo-
gies. For this objective, we introduce the Hadamard product ”¦”, which is
defined for k × l matrices as follows. Let A = (ai,j)k×l and B = (bi,j)k×l be
k× l matrices. The k× l matrix A ¦B = (ai,jbi,j) is the Hadamard product.

Notice that a grid-cylinder C(n,m) can be seen as a grid Gn,m = (V (n,m),
E(n,m)) with edges from the column 0 to the column n (row 0 to the row
m) of Gn,m. Then the transfer matrix Tn of the column 0 to the column n
(row 0 to the row m) has sense.

Theorem 2. Let F be a grid-cylinder formula of size m × n with graph
C(n,m) = (V (n,m), EC(n,m)), EC = E ∪ E1. Then #SAT (F) = 1tTn ¦

10

(Tn−1Tn−2 . . . T0)1, where Tk is the transfer matrix of the two consecutive
columns: k and k + 1 of Gn,m, k = 0, ..., n− 1 and Tn is the transfer matrix
of the columns 0 and n of Gn,m.

Clearly the previous theorem, also is true for EC = E∪E2 (interchanging
n by m and m by n). In the following example is illustrated.

Example 2. Let F = (x0 ∨ y0) ∧ (¬y0 ∨ ¬z0) ∧ (z0 ∨ z1) ∧ (z1 ∨ z2) ∧ (z2 ∨
y2)∧ (y2 ∨x2)∧ (x2 ∨x1)∧ (¬x1 ∨x0)∧ (x1 ∨ y1)∧ (¬y1 ∨ z1)∧ (¬y1 ∨¬y0)∧
(y1 ∨ y2), (x0, z0), (¬x1, z1), (¬x2,¬z2)) (see figure 5).

+ +

- +

-
-

+
+

+
+

+ +

+ +

- -+ +

+
+

+
+

+
-

x0 y0 z0

x1 y1 z1

x2 y2 z2

+ +

- +

- -

x
0
k

x
0
k+1

x
1
k x k+1

1 x
k+1

m

x
2
k

x
m
k

Fig. 5: Grid-Cylinder C(2, 2) Fig. 6: Consecutive Cycles

We have that the matrix T1T0 is given in example 1. The transfer matrix
T2 of columns 0 and 2 is computed as follows.

The strings of signs for edges from the column 0 to column 2 are given by:
s0
0s

0
1s

0
2 = +∓+, s2

0s
2
1s

2
2 = +++, τ0

0 τ0
1 τ0

2 = +−− and τ2
0 τ2

1 τ2
2 = ++−, then

F+∓+
2 = {u1, · · · ,u4} and F+++

2 = {v1,v2,v3,v4,v5}, where u1 = (0, 0, 0),
u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (1, 1, 0), v1 = (0, 0, 0), v2 = (1, 0, 0), v3 =
(0, 1, 0), v4 = (0, 0, 1) and v5 = (1, 0, 1). The transfer matrix T2 = (aij)5×4,
is a 5 × 4 matrix given by aij = 1 if ϕ++−(vi) · ϕ+−−(uj) = 0 and aij = 0
otherwise (1 ≤ i ≤ 5 and 1 ≤ j ≤ 4). Then

T2 ¦ (T1T0) =

0 0 1 0
0 0 1 0
0 0 0 0
1 1 1 1
1 1 1 0

¦

3 2 2 0
4 2 3 0
1 0 1 0
2 1 2 0
3 1 3 0

=

0 0 2 0
0 0 3 0
0 0 0 0
2 1 2 0
3 1 3 0

Therefore #SAT (F) = 17.

Proof (Theorem 2). Let F be a grid-cylinder formula of size m×n. We
have that F can be expressed as F = Fn,m∧Rn, where Fn,m is given by equa-
tion (4) and Rn =

∧m
j=0(τ

2n
j x0

j∨τ2n+1
j xn

j), that is, the graph of F is the graph
o Gn,m (the constrained graph of Fn,m) adding new labelled edges (with signs
τ2n
j and τ2n+1

j) from the column 0 to column n of Gn,m. Let Tn = (βij)rn×r0

be the transfer matrix of the column 0 to column n of Gn,m following the arcs
given by Rn. From remark 3, T = (Tn−1Tn−2 . . . T0) = (αij)rn×r0 , where αi,j

11

is the number of satisfying assignments of Fn,m with ūi ∈ Fξ0
m and ūj ∈ Fξn

m

fixed. Also, the formula Rn is satisfied by ui and uj iff βij = 1. Therefore,
there are βijαij satisfying assignments of F with ūi ∈ Fξ0

m and ūj ∈ Fξn
m

fixed. We observe that, the product βijαij is the entry ai,j of the Hadamard
product Tn ¦ T .¤

4.1 Transfer Matrix for Cycles

We can adapt our extension for computing the transfer matrix between two
consecutive simple cycles instead of two consecutive columns as follows.

Let Fm be the set of all (m + 1)-vectors v of 0′s and 1′s (as in section
3), and let Cm ⊂ Fm be the set of all (m + 1)-vectors v of 0′s and 1′s,
such that v does not have two consecutive 1′s and does not have 1′s in
the first and last positions. Given s = s0s1 . . . sm a string in Ŝ, we define
Fs

m = {e ∈ Fm : ϕs(e) ∈ Cm+`}, ` =| {s ∈ {s0, s1, . . . , sm} : s ∈ S̄} |.
Assume that xk

0, . . . , x
k
m and xk+1

0 , . . . , xk+1
m are the nodes of the k− th and

(k + 1)− th cycles respectively of Cn,m, 0 ≤ k < n.
For j = k, k + 1, let sj = sj

0s
j
1 · · · sj

m and τ j = τ j
0τ j

1 · · · τ j
m, where sj

i =
sgn(xj

i) and τ j
i = sgnk(x

j
i). We define a matrix Tk = Tm,k, the transfer

matrix from cycle k to the cycle k +1 as follows. Tk is an | Fsk+1

m | × | Fsk

m |
matrix of 0′s and 1′s whose rows and columns are indexed by vectors of
Fsk+1

m × Fsk

m . The entry of Tk in position (u,v) is 1 if the vectors ϕτk(u)
and ϕτk+1(v) are orthogonal, and is 0 otherwise (see figure 6).

Example 3. We compute the transfer matrices: T0 from cycle x0y0z0 to
x1y1z1 and T1 from cycle x1y1z1 to x2y2z2 for F as in example 2 (see figure
5). We have s0

0s
0
1s

0
2 = +±∓, s1

0s
1
1s

1
2 = ∓±+ and s2

0s
2
1s

2
2 = ∓+±. On the

other hand, τ0 = τ0
0 τ0

1 τ0
2 = +−+, τ1 = τ1

0 τ1
1 τ1

2 = −−+, and τ2 = τ2
0 τ2

1 τ2
2 =

τ3 = τ3
0 τ3

1 τ3
2 = +++. Then F+±∓

2 = {u1,u2,u3}, F∓±+
2 = {v1, v2, v3} and

F∓±+
2 = {w1,w2,w3}, where u1 = (0, 1, 0), u2 = (0, 0, 1), u3 = (0, 1, 1),

v1 = (0, 0, 0), v2 = (1, 0, 0), v3 = (0, 1, 0), w1 = (1, 0, 0), w2 = (0, 0, 1) and
w3 = (1, 0, 1). Computing ϕτ2k(u) · ϕτ2k+1(v) for k = 0, 1 and following the
definition of transfer matrix, we have that T0 and T1 are 3×3 matrices given
by

T0 =

1 0 1
1 0 1
1 1 1

 , T1 =

1 0 1
1 1 1
1 0 1

 .

Remark 4. For F from example 2,

1T1T01 = 1

2 1 2
3 1 3
2 1 2

1 = 17 = #SAT (F).

12

The following theorem can also be used for computing #SAT (F) for F ,
a grid-cylinder.

Theorem 3. Let F be a grid-cylinder of size m × n with graph C(n,m),
then #SAT (F) = 1tTn−1 . . . T01, where Tk is the transfer matrix of two
consecutive cycles: k and k + 1 of C(n,m), for k = 0, ..., n− 1.

Proof. The proof is similar to the proof of theorem 1, taking Fm, Cm,
Fs

m and the transfer matrix for cycles as in section 4.1. We observe that,
in this case the column formulas Ci given by equation (5) are simple cycles.¤

Using theorem 3 and Hadamard product we can compute #SAT (F) for
F , a grid-tori. The following theorem shows us how to proceed.

Theorem 4. Let F be a grid-tori of size m × n with graph T (n,m) =
(V (n,m), E′(n,m)), E′ = E1∪E2. Then #SAT (F) = Tn¦(Tn−1Tn−2 . . . T0),
where Tk is the transfer matrix of the two consecutive cycles of T (n,m): k
and k +1 of Gn,m, k = 0, ..., n− 1 and Tn is the transfer matrix of the cycle
0 and n.

Example 4. Let F1 = F ∪ {(x0 ∨ x2), (¬y0, y2), (¬z0,¬z2)}, where F is like
in example 2 (see figure 7).

+ +

- +

-
-

+
+

+
+

+ +

+ +

- -+ +

+
+

+
+

+
-

x0 y0 z0

x1 y1 z1

x2 y2 z2

+

- +

- -

+

+

-

+

-

-

Fig. 7: Grid-Tori of example 4

We compute the transfer matrix T2 from the cycle x0y0z0 to the cycle
x2y2z2 as follows. We have F+±∓

2 = {u1,u2,u3} and F∓±+
2 = {w1,w2,w3},

where the vectors u′is and w′js are as the example 3, only that now τ0 =
τ0
0 τ0

1 τ0
2 = + − − and τ3 = τ3

0 τ3
1 τ3

2 = + + −. The transfer matrix T2 is
obtained by the evaluation of ϕτ3(wi) · ϕτ0(uj) for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.
Then

T2 =

0 1 1
1 1 1
1 1 1

In example 2, T0, T1 and T1T0 are computed, therefore

T2 ¦ (T1T0) =

0 1 1
1 1 1
1 1 1

 ¦

2 1 2
3 1 3
2 1 2

 =

0 1 2
3 1 3
2 1 2

and #SAT (F1) = 1T2 ¦ (T1T0)1 = 15.

13

Proof (Theorem 4). Using the theorem 3, the proof is similar to
the proof of theorem 2 taking Fn,m as a grid cylinder formula and Rn =
C0 ∧ Cn ∧ E, where C0 and Cn corresponding to the first cycle and n-th
cycle of C(n,m) respectively (C(n,m) is the grid cylinder associated to
Fn,m). The formula E is formed by new clauses corresponding to edges
from the vertices of the first cycle to the vertices of n-th cycle of C(n,m).
¤

5 Conclusion

We have presented an extension of the transfer matrix method that allows
to consider signed edges on grid graphs, grid-cylinders and grid-tori. We
argued about the advantage of this extension in the problem of counting
assignments of Boolean formulas in 2-CNF .

We have designed a procedure for computing #2SAT(F) where F is a
grid, grid-cylinder or grid-tori Boolean formula, based on the sum of all
entries of the product matrix of the transfer matrix of each two consecutive
columns for the case of a grid. In a grid cylinder we have two result for
computing #2SAT(F) one uses the sum of the entries of the Hadamard
product between the transfer matrix of the first column (row) and the top
column (row) with the product matrix of the transfer matrix of each two
consecutive columns (row). The second result uses the sum of all entries of
the product matrix of the transfer matrix of each two consecutive cycles.
Finally, if F is a grid tori, we use the sum of the entries of the Hadamard
product between the transfer matrix of the first cycle and the top cycle of
tori with the product matrix of the transfer matrix of each two consecutive
cycles of the tori.

A work in progress is the detailed determination of the complexity of
the proposed extension. However, based on previous works in the transfer
matrix method and our preliminary experiments, the complexity remains
polynomial as long as the starting grid graphs are of fixed height, we consider
the complexity with a fixed-parameter.

References

[1] R. Baxter. Planar lattice gases with nearest neighbour exclusion. An-
nals of Combinatorics, 3:191–203, 1999.

[2] N. J. Calkin and H. S. Wilf. The number of independent sets in a grid
graph. SIAM J. Discrete Math., 11(1):54–60, 1998.

[3] V. Dahllöf, P. Jonsson, and M. Wahlström. Counting satisfying assign-
ments in 2-sat and 3-sat. In COCOON, pages 535–543, 2002.

14

[4] V. Dahllöf, P. Jonsson, and M. Wahlström. Counting models for 2sat
and 3sat formulae. Theor. Comput. Sci., 332(1-3):265–291, 2005.

[5] J. Davies and F. Bacchus. Using more reasoning to improve #sat solv-
ing. In AAAI, pages 185–190, 2007.

[6] O. Dubois. Counting the number of solutions for instances of satisfia-
bility. Theor. Comput. Sci., 81(1):49–64, 1991.

[7] R. Euler. The fibonacci number of a grid graph and a new class of
integer sequences. JIS Journal of Integer Sequences, 8(2):1–16, 2005.

[8] M. Fürer and S. P. Kasiviswanathan. Algorithms for counting 2-sat
solutions and colorings with applications. In AAIM, pages 47–57, 2007.

[9] M. J. Golin, Y.-C. Leung, Y. Wang, and X. Yong. Counting structures
in grid graphs, cylinders and tori using transfer matrices: Survey and
new results. In ALENEX/ANALCO, pages 250–258, 2005.

[10] P. T. Littman M. L. and I. R. On the complexity of counting satisfying
assignments. Notes of LICS, Workshop on Satisfiability, 2001.

[11] D. Roth. On the hardness of approximate reasoning. Artif. Intell.,
82(1-2):273–302, 1996.

[12] R. M. Roth, P. H. Siegel, and J. K. Wolf. Efficient coding schemes
for the hard-square model. IEEE Transactions on Information Theory,
47(3):1166–1176, 2001.

[13] B. Russ. Randomized Algorithms: Approximation, Generation, and
Counting. Distinguished dissertations Springer, 2001.

[14] S. P. Vadhan. The complexity of counting in sparse, regular, and planar
graphs. SIAM J. Comput., 31(2):398–427, 2001.

[15] M. Wahlström. A tighter bound for counting max-weight solutions to
2sat instances. In IWPEC, pages 202–213, 2008.

[16] W. Zhang. Number of models and satisfiability of sets of clauses. Theor.
Comput. Sci., 155(1):277–288, 1996.

15

