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Abstract

The problem of expressing and solving satisfiability problems (SAT) with
qualitative preferences is central in many areas of Computer Science and
Artificial Intelligence. In previous papers, it has been shown that qualita-
tive preferences on literals allow for capturing qualitative/quantitative prefer-
ences on literals/formulas; and that an optimal model for a satisfiability prob-
lems with qualitative preferences on literals can be computed via a simple
modification of the Davis-Logemann-Loveland procedure (DLL): Given a
SAT formula, an optimal solution is computed by simply imposing that DLL
branches according to the partial order on the preferences.Unfortunately, it
is well known that introducing an ordering on the branching heuristic of DLL
may cause an exponential degradation in its performances. The experimental
analysis reported in these papers highlights that such degradation can indeed
show up in the presence of a significant number of preferences.

In this paper we propose an alternative solution which does not require
any modification of the DLL heuristic: Once a solution is computed, a con-
straint is added to the input formula imposing that the new solution (if any)
has to be better than the last computed. We implemented this idea, and the re-
sulting system can lead to significant improvements wrt the original proposal
when dealing withMIN -ONE/MAX -SAT problems corresponding to qualita-
tive preferences on structured instances. We finally discuss how our results
can be used in the planning as satisfiability framework.

1 Introduction

The problem of expressing and solving satisfiability problems with qualitative pref-
erences is central in many areas of Computer Science and Artificial Intelligence.
For instance, in planning, beside the goals that have to be achieved, it is common to
have other “soft” goals that it would be desirable to satisfy: A plan is one solution
which achieves all the goals, and an “optimal” plan is one which also achieves as
many soft goals as possible. In planning as satisfiability [16] with soft goals [13],
the task of finding an optimal plan is reduced to a satisfiability problem with qual-
itative preferences. Here, for simplicity, we consider qualitative preferences on
literals, in which preferences are modeled as a setS of literals, and the relative
importance of satisfying each literal in the setS is captured with a partial order on
S. In [12, 13], it has been shown that
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1. qualitative preferences on formulas and quantitative preferences on liter-
als/formulas can be reduced to qualitative preferences on literals; and

2. it is possible to compute an optimal solution (wrt the expressed preferences)
via a simple modification of the Davis-Logemann-Loveland procedure (DLL):
In more details, an optimal solution is computed by imposingthat branching
occurs according to the partial order on the literals in the set of preferences.

This method for computing an optimal solution has the advantage that it only re-
quires a simple modification of existing state-of-the-art SAT solvers all of which
are based on DLL. However, it is well known that introducing an ordering on the
branching heuristic of DLL may cause an exponential degradation in its perfor-
mances [15].OPTSAT is the name given to the related system built on top ofMIN -
ISAT [10]. The experimental analysis reported in [12, 13] highlights that such
degradation can show up in the presence of a significant number of preferences.

In this paper we propose an alternative solution which does not require any
modification of DLL heuristic and thus which does not have theabove mentioned
disadvantage. In a few words, once a solution is computed, a blocking formula is
added to the input formula imposing that the new solution (ifany) will be better
than the last computed wrt the qualitative preference on literals expressed. Our
approach works withanyqualitative preference on literals, and thus (via the reduc-
tions described in [12, 13]) with any qualitative/quantitative preference on liter-
als/formulas. We extendedOPTSAT in order to incorporate this new method. In the
following, we useOPTSAT-HS to refer toOPTSATwhen using the method described
in [12], andOPTSAT-BF to refer toOPTSATwhen using the method here described.

To comparatively test the effectiveness of the approach, weconsiderMAX -
SAT and MIN -ONE problems, in their non partial/partial1, qualitative/quantitative
versions, as in [12]. Our selection of benchmarks includes problems from the last
MAX -SAT evaluation2, well known satisfiability planning problems, and does not
include problems with a (pseudo)-random structure. Indeed, OPTSAT is based on
MINISAT , andMINISAT has been designed to solve large industrial SAT problems
(and not small randomly generated problems). In the qualitative case of (partial)
MIN -ONE and MAX -SAT problems, the experimental results show thatOPTSAT-
BF performs better thanOPTSAT-HS. The reasons for the good performances of
OPTSAT-BF are:

1. The good quality of the first computed solution, and

2. The few iterations required to get to the determined optimal solution.

In the quantitative case,OPTSAT-BF is competitive also with respect to the other
state-of-the-art systems forMAX -SAT, including the most performing systems in
the recent Pseudo-Boolean andMAX -SAT evaluations.

1In the partial MIN -ONE (resp. MAX -SAT) problem the optimization has to be performed on a
subset of the variables (resp. clauses) of the problem.

2http://www.maxsat07.udl.es/.
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We finally discuss how our results can be used in the planning as satisfiability
framework.

Summing up, the main contributions of the paper are:

• We define a new approach for solving satisfiability problems with qualitative
preferences.

• We formally state some properties of our algorithm.

• We extendOPTSAT in order to implement this new approach.

• On (partial) MAX -SAT and MIN -ONE non (pseudo)-random problems, we
show thatOPTSAT-BF performs better thanOPTSAT-HS in the qualitative
case, and that is competitive wrt other state-of-the-art systems in the quanti-
tative case.

The paper is structured as follows. In Section 2 we review ourformalism for
expressing preferences. Section 3 is dedicated to the presentation of the algorithm
behindOPTSAT-BF, and its formal properties. Section 4 presents the experimental
analysis we conducted. Section 5 ends the paper with discussion on the usability
of our work in the planning as satisfiability framework and some final remarks.

2 Satisfiability and Qualitative Preferences

Consider a finite setP of variables. A literal is a variablex or its negationx. We
assumex = x. A clauseis a finite disjunction of literals and aformula is a finite
conjunction of clauses. As customary in SAT, we also represent clauses as sets of
literals and formulas as sets of clauses, and we use⊤ and⊥ to denote the empty set
of clauses and the empty clause, respectively (also standing for TRUE andFALSE,
respectively). For example, given the 4 variablesFish, Meat, RedWine, WhiteWine,
the formula

{Fish,Meat}, {RedWine,WhiteWine} (1)

models the fact that we cannot have both fish (Fish) and meat (Meat), both red
(RedWine) and white (WhiteWine) wine.

An assignmentis a consistent set of literals. Ifl ∈ µ, we say that bothl andl
areassignedbyµ. An assignmentµ is total if each literall is assigned byµ. A total
assignmentµ satisfies a formulaϕ if for each clauseC ∈ ϕ, C ∩ µ 6= ∅. A model
µ of a formulaϕ is an assignment satisfyingϕ. A formula ϕ entailsa formula
ψ if the models ofϕ are a subset of the models ofψ. For instance, (1) has 9
models. In the following, we abbreviate a total assignment with the set of variables
assigned to true, and we writeµ |= ψ to indicate thatµ is a model ofψ. For
instance, we write{Fish,WhiteWine} as an abbreviation for the total assignment
{Fish,Meat,WhiteWine,RedWine} in which the only variables assigned to true are
FishandWhiteWine, i.e., the situation in which we have fish and white wine.
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A qualitative preference on literalsis a partially ordered set of literals, i.e., a
pair S,≺ whereS is a set of literals (also called theset of preferences), and≺ is
a partial order onS. Intuitively, S represents the set of literals that we would like
to have satisfied, and≺ models the relative importance of our preferences. For
example,

{Fish,RedWine,WhiteWine}, {WhiteWine≺ RedWine} (2)

models the case in which we prefer to have fish and both red and white wine. In the
case in which it is not possible to have both red and white wine, we like more to
have white than red wine. A qualitative preferenceS,≺ on literals can be extended
to the set of total assignments as follows: Given two total assignmentsµ andµ′, µ
is preferred toµ′ (µ ≺ µ′) if and only if

1. there exists a literall ∈ S with l ∈ µ andl ∈ µ′; and

2. for each literall′ ∈ S ∩ (µ′ \ µ), there exists a literall ∈ S ∩ (µ \ µ′) such
that l ≺ l′.

A model µ of a formulaϕ is optimal if it is a minimal element of the partially
ordered set of models ofϕ. For instance, considering the qualitative preference
(2), the formula (1) has only one optimal model, i.e.,{Fish,WhiteWine}.

We recall that qualitative preference on formulas can be reduced to qualita-
tive preferences on literals (see [13]); and that by propositional encoding of the
objective function to maximize/minimize, it is possible toreduce also quantitative
preferences to qualitative ones, see [12].

3 Solving satisfiability problems with preferences

Consider a formulaϕ and a qualitative preference on literalsS,≺. The problem of
computing an optimal model ofϕ wrt S,≺ can be solved by

1. computing a (not necessarily optimal) modelµ of ϕ,

2. adding a formula which restricts the subsequent search for models to those
which are preferred toµ,

3. iterating the above two steps up to the point that the last assignment found
can no longer be improved.

Crucial for the above procedure is a condition which enablesus to say which
are the models that are preferred (wrtS,≺) to an assignmentµ. Thepreference
formula forµ wrt S,≺ is

(∨l:l∈S,l 6∈µl) ∧ (∧l′:l′∈S,l′∈µ(∨l:l∈S,l 6∈µ,l≺l′l ∨ l
′)). (3)
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An assignmentµ′ is preferred toµ wrt S,≺ iff µ′ satisfies (3), as stated by the
following theorem.

Theorem 1 Letµ andµ′ be two total assignments. LetS,≺ be a qualitative prefer-
ence.µ′ is preferred toµ wrt S,≺ if and only ifµ′ satisfies the preference formula
for µ wrt S,≺.

As an example of the application of the theorem above consider the following
particular cases:

1. S ⊆ µ, (e.g., because there are no preferences,S = ∅): In this case (3) is
equivalent to⊥, meaning that there is no assignment which is preferred toµ,
i.e., thatµ is already optimal;

2. S,≺= {l1, . . . , ln}, ∅: In this case (3) becomes(∨l:l∈S,l 6∈µl)∧(∧l′:l′∈S,l′∈µl
′),

meaning that any assignmentµ′ with µ′ ≺ µmust be such thatµ∩S ⊂ µ′∩S;

Considering the preference (2),

1. if µ1 = {Meat,RedWine}, then (3) is

ψ1 : (Fish∨ WhiteWine) ∧ (WhiteWine∨ RedWine)

2. if µ2 = {Meat,WhiteWine}, then (3) is

ψ2 : (Fish∨ RedWine) ∧ WhiteWine

3. if µ3 = {Fish,WhiteWine}, then (3) is

ψ3 : RedWine∧ Fish∧ WhiteWine.

Notice thatµ2 ≺ µ1 andµ3 ≺ µ2: As a consequenceψ2 entailsψ1 andψ3 entails
ψ2. Further, as the last example makes clear, it is indeed possible that the prefer-
ence formula for an assignment is inconsistent with the given set of constraints, and
this is indeed an obvious consequence of the fact that the definition of (3) does not
take into account the input formula: In the case in which the preference formula
for an assignmentµ is inconsistent with the input set of clauses,µ is optimal.

As we have already said at the beginning of the section, Theorem 1 allows us to
use any complete SAT solver as a black box for computing an optimal assignment.
Once a modelµ of a formulaϕ is found, the formula (3) is computed and added
to ϕ and then the SAT solver can be invoked: The returned model is ensured to
be preferred toµ. However, given that all the state-of-the-art systems are based
on DLL, it is possible, following what has been successfullydone in various areas
of automated deduction (see, e.g., [2]), to add the formula (3) as soon asµ is de-
termined, i.e.,during the search. The resulting procedure is represented in Figure 1.

In the figure:

5



S,≺ := a qualitative preference on literals;
ϕ := the input formula;ψ := ⊤; µopt := ∅

function PREF-DLL (ϕ ∪ ψ,µ)
1 if (⊥ ∈ (ϕ ∪ ψ)µ) return FALSE;
2 if (µ is total)µopt := µ; ψ := Reason(µ, S,≺); return FALSE;
3 if ({l} ∈ (ϕ ∪ ψ)µ) return PREF-DLL (ϕ ∪ ψ, µ ∪ {l});
4 l := ChooseLiteral(ϕ ∪ ψ, µ);
5 return PREF-DLL (ϕ ∪ ψ, µ ∪ {l}) or

PREF-DLL (ϕ ∪ ψ, µ ∪ {l}).

Figure 1: The algorithm ofPREF-DLL .

• ϕ is the input set of clauses,S,≺ is a qualitative preference on literals,µopt

is the (current) optimal assignment,ψ is the set of clauses corresponding to
the preference formula forµopt wrt S,≺; µ is an assignment;

• (ϕ∪ψ)µ is the set of clauses obtained fromϕ∪ψ by (i) deleting the clauses
C ∈ ϕ∪ψ with µ∩C 6= ∅, and(ii) substituting the other clausesC ∈ ϕ∪ψ
with C \ {l : l ∈ µ};

• Reason(µ, S,≺) returns the set of clauses corresponding to the preference
formula forµ wrt S,≺;

• ChooseLiteral(ϕ∪ψ, µ) returns a literal inϕ∪ψ which is unassigned byµ.

It is easy to see thatPREF-DLL is exactly the same asDLL , except that once a model
µ is determined (see line 2),

1. µ is stored inµopt;

2. the preference formula forµ wrt S,≺ is stored inψ, and

3. FALSE is returned.

Notice thatPREF-DLL generalizesDLL in the sense that if there are no preferences
(i.e., if S = ∅), PREF-DLL behaves asDLL : Indeed, ifS = ∅ then any model is
optimal, and as soon as one modelµ is found, the preference formula forµ wrt
S,≺ (i.e.,⊥) determines the termination ofPREF-DLL .

Theorem 2 Let ϕ be a formula andS,≺ a qualitative preference on literals.
PREF-DLL (ϕ, ∅) terminates, and thenµopt is empty if ϕ is unsatisfiable, and an
optimal model ofϕ wrt S,≺ otherwise.

Beside the above, one interesting property ofPREF-DLL is its “anytime” prop-
erty: The sequence of modelsµ1, µ2, . . . , µn computed byPREF-DLL are ensured
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to be such thatµi+1 is preferred toµi, i.e.,µi+1 ≺ µi (0 < i < n). Thus,PREF-
DLL is as fast asDLL to compute the first model of the input set of clauses, and,
time permitting, from that point on, it can only improve the quality of the model
found. Also notice that in Figure 1 we calledReasonthe procedure for computing
the preference formula (3). Indeed, most of the current SAT solvers (at least those
meant for applications) are based on learning: As soon as a clauseC becomes
empty,C is returned and then used by the learning mechanism of the solver to
backjump over irrelevant nodes while backtracking, and, with learning, to prune
the subsequent search of the solver. Such clauseC is often called “reason” or con-
flict clause, and it has the property that it is falsified by theassignmentµ which
causedC to become empty (i.e., for each literall ∈ C, l ∈ µ). In our case, with
solvers based on learning, as soon as the assignmentµ is total and no empty clause
is detected, we can return the clauseC corresponding to the left conjunct of (3) as
conflict clause: Indeed,∨l∈S,l 6∈µl is falsified byµ. However, we must also add the
other clauses corresponding to (3) to the input set of clauses, since these are needed
to ensure that the search will continue looking for another modelµ′ of the input
formula withµ′ ≺ µ. Fortunately, the clauses added to the input set of clauses,do
not need to be indefinitely retained (otherwisePREF-DLL can have an exponential
blow up in space): Once a new modelµ′ with µ′ ≺ µ is found, we can discard
the clauses added because ofµ since they are entailed by the new clauses added
because ofµ′, as stated by the following theorem.

Theorem 3 Let S,≺ be a qualitative preference. Letµ1, µ2, . . . , µn be the se-
quence of models computed byPREF-DLL , andψ1, ψ2, . . . , ψn be the correspond-
ing preference formulas. For eachi, 0 < i < n, ψi+1 entailsψi.

In PREF-DLL (see Figure 1), the preference formulaψi for µi is overwritten
as soon as a new modelµi+1 is determined (line 2).PREF-DLL is thus guaran-
teed to work in polynomial space in the size of the input formula and qualitative
preference.

4 Implementation and experimental analysis

We extendedOPTSAT [12] in order to incorporate these ideas.OPTSAT is built
on top of MINISAT [10], the 2005 version, winner of the SAT 2005 competition
on the industrial benchmarks category (together with the SAT/CNF minimizer
SATELITE [9]): Such choice has been motivated by our interest in solving, in
particular, large structured problems coming from applications. The two versions
of OPTSAT – OPTSAT-HS and OPTSAT-BF – are the ones that we consider in the
case of qualitative preferences.

In the case on quantitative preference,OPTSAT encodes the objective function
using the methods described in [23, 3]: Here we used the one based on [23]. Table 1
and 2 show the results forOPTSAT-HS andOPTSAT-BF on a variety of problems de-
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class #I OPTSAT-HS OPTSAT-BF

1 Partial MINONE 21 77.99(19) 2.7(21)
2 MINONE 26 0.69(26) 0.2(26)
3 MAXSAT 35 26.68(34) 11.25(35)

4 MAXCUT/spinglass 5 0.01(5) 0.01(5)
5 MAXCUT/dimacs 62 0.01(62) 0.01(62)

6 PSEUDO/garden 7 0.02(7) 0.01(7)
7 PSEUDO/logic-synthesis 17 0.03(17) 0.01(17)
8 PSEUDO/primes 148 4.81(130) 0.19(131)
9 PSEUDO/routing 15 11.69(15) 3.12(15)

10 MAXONE/struct. 60 0.96(60) 0.13(60)
11 MAXCLIQUE/struct. 62 0.01(62) 0.06(62)

Table 1: Results for solving satisfiability problems with qualitative preferences.
Problems are: PartialMIN -ONE (row 1), MIN -ONE (row 2), MAX -SAT (rows 3-5),
and partialMAX -SAT (rows 6-11).

class #I OPBDP PBS4 MSAT+ BSOLO MAX SATZ MMSAT OPTSAT-HSOPTSAT-BF

1 Partial MINONE 21 − 223.14(15)43.32(18)433.21(16) 391.21(12)74.28(21) 69.89(21)
2 MINONE 26 85.37(7) 17.56(19) 7.33(24) 115.73(22) 87.21(24) 93.24(24) 23.99(25)
3 MAXSAT 35 20.89(3) 98.55(10)130.37(31)192.56(23)274.38(22)229.73(21)218.86(31)175.12(31)

4 MAXCUT/spinglass 5 0.99(1) 66.67(1) 0.86(1) 76.57(1) 33.19(3) 1.09(3) 7.56(1) 7.52(1)
5 MAXCUT/dimacs 62 230.33(5) 0.01(2) 247.54(7) 0.01(2) 59.27(52)194.52(52) 66.86(4) 21.61(3)

6 PSEUDO/garden 7 2.2(4) 147.58(4) 0.25(5) 30.18(4) 4.75(5) 22.8(5) 36.66(5)
7PSEUDO/logic-synth.17 − 85.88(1) 490.36(5) − 81.93(2) 90.36(3) 338.26(3)
8 PSEUDO/primes 148 16.65(85) 18.08(90)11.52 (104)22.23 (94) 62.08 (107)31.8(103)60.59(109)
9 PSEUDO/routing 15 81.83(5) 102.75(9) 43.74(15) 373.73(8) 109.49(14)41.49(15) 36.1(15)

10 MAXONE/struct. 60 296.26(35)11.48(60) 2.02(58) 40.96(60) 22.5(60) 293(56) 7.87(58)
11MAXCLIQUE/struct. 62 70.37(16) 23.79(13)154.39(22)248.26(14) 61.97(36) 54.14(19)178.04(23)

Table 2: Results for solving satisfiability problems with quantitative preferences.
Problems are, like in Table 1: PartialMIN -ONE (row 1), MIN -ONE (row 2), MAX -
SAT (rows 3-5), and partialMAX -SAT (rows 6-11).
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tailed below. Table 2 shows the results also for various other state-of-the-art solvers
included for completeness. In particular we considered both dedicated solvers for

• MAX -SAT problems, likeBF [6]; MAX SOLVER [24]; TOOLBAR [21, 17]
ver. 3.0; MAX SATZ version submitted to the 2007 Evaluation [18]; MIN-
IMAX SAT ver. 1.0 [14] and abbreviated with MMSAT in Table 2; and

• generic Pseudo-Boolean solvers, likeOPBDPver. 1.1.1 [4]; PBS ver. 2.1 and
ver. 4 [1]; MINISAT + ver. 1.13 [11] and abbreviated withMSAT+ in Table 2;
GLPPB ver. 0.2, by the same authors of PUEBLO [22],3 as submitted to the
2007 Evaluation;BSOLO ver. 3.0.17 [19].

MAX SATZ and MINI MAX SAT have been the winner of the recent Max-SAT Evalu-
ation 2007 in the “Max-SAT” and “Partial Max-SAT” category,respectively.MIN -
ISAT+ was the solver able to prove unsatisfiability and optimality to a larger num-
ber of instances than all the other solvers that entered intothe Pseudo-Boolean
Evaluation 2005 [20], and the best performing solver (together with BSOLO) also
in the Pseudo-Boolean Evaluation 2006, category OPT-SMALLINT-LIN. BSOLO

and GLPPB have been the best performing Pseudo-Boolean solvers in the OPT-
SMALLINT-LIN category of the recent Pseudo-Boolean Evaluation 2007. Con-
sidering the dedicated solvers forMAX -SAT, we discardedBF, MAX SOLVER and
TOOLBAR after an initial analysis because they seem to be tailored for randomly
generated problems, and are thus not suited to deal with the problems we con-
sider here. About the Pseudo-Boolean solvers, we do not showthe results for PBS
ver. 2.1 andGLPPB because they are almost always slower than PBS ver. 4.0 and
BSOLO, respectively, and, ultimately, they manage to solve only afew of the in-
stances we consider.

About the benchmarks, we considered a wide set of instances,mainly com-
ing for real-world applications. In particular, we usedSATPLAN 2004, release of
10 Feb. 2006 to generate the partialMIN -ONE problems of row 1: In more de-
tails, we considered several domains from previous International Planning Com-
petitions (IPCs); generated the first satisfiable instanceswith SATPLAN; and, for
such instance, we considered the partialMIN -ONE problem of minimizing the set
of action variables set to true. ForMIN -ONE andMAX -SAT problems, we selected
well known satisfiable and unsatisfiable SAT instances from several domains, i.e.,
Formal Verification instances from the Bejing’96 competition, planning problems
from SATPLAN contributed by Kautz and Selman, Data Encryption Standard (DES)
instances, quasi group instances, and bounded model checking (BMC) problems
used in the original BMC paper [5], miter-based circuit equivalence benchmarks by
Joao Marques-Silva: Each of these satisfiable instances corresponds to aMIN -ONE

problem and the results are presented in row 2, while the unsatisfiable instances
correspond to theMAX -SAT problems whose results are in row 3. Finally, we in-
cluded in our analysis also (partial)MAX -SAT problems from the recentMAX -SAT

3http://www.eecs.umich.edu/∼hsheini/pueblo/. We did not evaluate PUEBLO

becauseBSOLOperformed better in the category of interest of the Pseudo-Boolean Evaluation 2007.
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evaluation, rows 4-11 of both Tables: As it emerges from the results of this evalu-
ation4, these benchmarks are hard; the performances of the best solvers differ only
for a factor, no solver clearly wins; and it is difficult to solve even a single instance
more than the other solvers.

Each solver has been run using its default settings. All the experiments have
been run on a Linux box equipped with a Pentium IV 3.2GHz processor and 1GB
of RAM. CPU time is measured in seconds; timeout has been set to 1800 seconds.
In Table 1 and 2,

• column 2 is the class of the problems;

• column 3 is the number of instances in the class;

while the remaining columns are dedicated to the results of the systems for quali-
tative and quantitative case, respectively.

Results for solvers are cumulatively presented as in the report of theMAX -SAT

Evaluations: Given a set of instances, we show the mean CPU time of the solved
instances, and the number of solved ones (in parenthesis, which is the main evalua-
tion parameter). In Table 2,MAX SATZ can only deal withMAX -SAT problems, and
this is why the corresponding results forMIN -ONE and partialMIN -ONE/MAX -SAT

are missing.
In the qualitative case presented in Table 1 we can see thatOPTSAT-BF (column

5) is consistently better thanOPTSAT-HS (column 4), both in terms of mean CPU
time and solved instances:OPTSAT-BF solves the same number of instances of
OPTSAT-HS, or higher, and in less time, sometimes dramatically (see, e.g, rows 1
and 8), but for row 11 which is nonetheless solved very easilyby both solvers.

In the quantitative case presented in Table 2,OPTSAT-BF performs also well
on these benchmarks. We have to remind that these benchmarksdo not include
many problems from the last evaluations because of their (pseudo)-random struc-
ture which is not suited for our solver. For fairness, this also implies that it is not
clear whether the problem we selected are suited for the other solver in our analysis.
Indeed, we conducted a preliminary analysis on the (pseudo)-random problems we
excluded, and we got a different picture, in which other solvers (and in particular
M INI MAX SAT) emerge.5

In order to understand the good behavior of our algorithm on the qualitative
case (which is the focus of our work), Table 3 shows, for each class, the average of
the CPU times for finding the first (even if not optimal) (column T1) and optimal

4See the slides about the results, available athttp://www.maxsat07.udl.es/
ms07-pre.pdf.

5Moreover, we can note that for the classes of instances in Table 2 coming from translation of
Pseudo-Boolean instances, i.e., rows 6-9, we have directlymapped-back the instances in the Pseudo-
Boolean format, in order to compare all the systems on the very same instances. A preliminary
analysis ofBSOLO andMINISAT + on the native Pseudo-Boolean instances for rows 6-9 of Table 2
indicates thatBSOLO takes advantages from the native formulation, while this isnot the case for
MINISAT +.
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class T1 Q1 #Sols Tf Qf

1 Partial MINONE 2.68 45.5 2.5 2.7 44.1
2 MINONE 0.19 751.6 2 0.2 751.6
3 MAXSAT 0.05 8605.2 21.2 11.25 8847.6

4 MAXCUT/spinglass 0.01 770.4 2 0.01 770.4
5 MAXCUT/dimacs 0.01 695.9 2.2 0.01 701.9

6 PSEUDO/garden 0.01 496 2 0.01 496
7 PSEUDO/logic-synthesis0.01 152.2 2 0.01 152.2
8 PSEUDO/primes 0.18 368.4 2 0.19 368.4
9 PSEUDO/routing 3.12 58.7 2 3.12 58.7

10 MAXONE/structured 0.12 240.5 8.4 0.13 249.8
11 MAXCLIQUE/structured 0.06 430.4 2 0.06 430.4

Table 3: CPU time for finding first (columnT1) and optimal (columnTf ) solution.
1 (for exit with FALSE, thus the last computed model is optimal) + number of
models computed byOPTSAT-BF (column#Sols). Quality of the first (column
Q1) and optimal (columnQf ) solution.

(columnTf ) solution; the average quality6 of the first (columnQ1) and optimal
(columnQf ) solution; and the average of 1+ the number of models computed by
OPTSAT-BF (column#Sols). Looking at the table, we see that the good perfor-
mances ofOPTSAT-BF can be explained by the following factors:

1. the relative quality of the first solution (i.e.,Qf/Q1 for rows 1-2 andQ1/Qf

for rows 3-11) is usually very high, greater than0.96; and

2. the low number of intermediate solutions generated before the optimal one:
For 9 classes out of 11, the number in column#Sols is lower or equal than
2.5. Considering that2 indicates that the first computed model is already
optimal, this means that the algorithm converges to an optimal model very
quickly.

Finally note how, for the two classes in which the first solution is of a low quality,
i.e., rows 3 and 10 in Table 3, the convergence is very different: For the MAXSAT
class in row 3,T1 is negligible, and all CPU time is spent in “filling the gap” with
the optimal result; while for the MAXONE/structured class,most of the time is
spent looking for the first solution. As a consequence, inMAX -SAT (resp. MAX-
ONE/structured) the optimal solution is reached by a seriesof relatively difficult
(resp. easy) intermediate steps.

6Quality is measured in terms of number of variables assignedto true forMIN -ONE and partial
MIN -ONE problems, and in terms of number of satisfied clauses forMAX -SAT and partialMAX -SAT

problems.
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5 Discussion and Conclusions

Planning as Satisfiability[16] is the best approach for optimally (i.e. wrt makespan)
solving classical planning problems, and one of the best application area of SAT
itself: SATPLAN and MAX PLAN 7, two planners based in this approach, have been
the winner of the International Planning Competition 2004 and 2006 on their cat-
egory. As we already said in the introduction, in [13] the planning as satisfiability
approach has been extended by introducing preferences; andtheSATPLAN system
has been extended as well by using theOPTSAT-HS solver to deal with the propo-
sitional part of the problem: In this way,SATPLAN can return “optimal” plans, e.g,
plans with the maximal number of “soft” goals satisfied and/or with the minimal
number of actions included. Besides its good results, the resulting planning sys-
tem suffers from the inherited weaknesses ofOPTSAT-HS: Thus, it is of interest
to integrate theOPTSAT-BF system intoSATPLAN, and evaluate the overall perfor-
mances for generate “optimal” plans. Preliminary results show that the approach
is promising.

Summing up, we have defined and implemented a new approach based on DLL
for solving satisfiability problems with preferences whichdoes not need any mod-
ification to DLL heuristic. The basic idea is that whenever a solution is found, a
formula is added to the input set of clauses ensuring that thenew model (if any)
will be better than the last computed one. The experimental analysis performed on
a wide set of, mainly structured, (partial)MAX -SAT andMIN -ONE benchmarks has
shown that it leads in most cases to significant improvementswhen dealing with
qualitative preferences, and that it is also competitive with other state-of-the-art
systems in the quantitative case.

There is a huge literature on expressing and reasoning with preferences, see,
e.g. [8], and the various events on preferences taking placeevery year. If we do
not take into account [12, 13], the closest work to ours seemsto be the one on CP-
nets [7]: In the paper, the authors show that exploring the search space according
to the partial order on the values of the variables, the first solution determined
is guaranteed to be optimal. CP-nets allows for non-Booleanvariables, but on
the other hand they only allow to express preferences between values of a same
variable: Thus, modeling “I prefera to b” wherea andb are distinct propositional
variables cannot be directly captured.
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