
EasyAnalyzer: an object-oriented framework for
the experimental analysis of stochastic local search

algorithms?

Luca Di Gaspero1, Andrea Roli2, and Andrea Schaerf1

1 DIEGM, University of Udine, via delle Scienze 208,
I-33100, Udine, Italy {l.digaspero | schaerf}@uniud.it

2 DEIS, University of Bologna, via Venezia 52,
I-47023 Cesena, Italy andrea.roli@unibo.it

Abstract

In this paper we describe EasyAnalyzer, an object-oriented frame-
work for the experimental analysis of SLS algorithms, developed in the
C++ language. EasyAnalyzer integrates with EasyLocal++, a
framework for the development of SLS algorithms, in order to provide
a unified development and analysis environment. Moreover, the tool
has been designed so that it can be easily interfaced also with SLS
solvers developed using other languages/tools and/or with command-
line executables.

1 Introduction

In recent years, much research effort has focused on the proposals of envi-
ronments specifically designed to help the formulation and implementation
of Stochastic Local Search (SLS) algorithms by means of specification lan-
guages and/or software tools. Unfortunately, as pointed out by in [10,
Epilogue, pp. 533–534], the same amount of effort has not been oriented
in the development of software tools for the experimental analyses of the
algorithms. To this regard, [9] propose a suite of tools for visualizing the
behavior of SLS algorithms, which is particularly tailored for MDF (Meta-
heuristics Development Framework) [11]. However, to the best of our knowl-
edge, we can claim that at present there is no widely-accepted comprehensive
environment.

In this paper we try to overcome this lack by proposing an object-
oriented framework, called EasyAnalyzer, for the analysis of SLS algo-
rithms. EasyAnalyzer is a software tool that belongs to the family of
Object-Oriented (O-O) frameworks. A framework is a special kind of soft-
ware library, which consists of a hierarchy of abstract classes and is charac-
terized by the invertion of control mechanism for the communication with
the user code (also known as the Hollywood Principle: “Don’t call us, we’ll

?This paper is an excerpt from [4].

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008



call you”). That is, the functions of the framework call the user-defined ones
and not the other way round as it usually happens with software libraries.
The framework thus provides the full control logic and, in order to use it,
the user is required to supply the problem specific details by means of some
standardized interfaces.

Our work is founded on Design Patterns [8], which are abstract struc-
tures of classes, commonly present in O-O applications and frameworks, that
have been precisely identified and classified. The use of patterns allows us
to address many design and implementation issues in a more principled way.

EasyAnalyzer provides a family of off-the-shelf analysis methods to be
coupled to local search solvers developed using one of the tools mentioned
above or written from scratch. For example, it performs various kinds of
search space analysis in order to understand, study, and tune the behavior
of SLS algorithms. The properties of the search space are a crucial factor of
SLS algorithm performance [7, 10]. Such characteristics are usually studied
by implementing ad hoc programs, tailored both to the specific algorithm
and to the problem at hand. EasyAnalyzer makes it possible to abstract
from algorithm implementation and problem details and to design general
search space analyzers.

EasyAnalyzer is specifically designed to blend in a natural way with
EasyLocal++, the local search framework developed by two of these au-
thors [5, 6], which has recently been entirely redesigned to allow for more
complex search strategies. Nevertheless, EasyAnalyzer is capable of inter-
acting with other software environments and with stand-alone applications.

This is an ongoing work, and some modules still have to be implemented.
However, the general architecture, the core modules, and the interface with
EasyLocal++ and with command-line executables are completed and sta-
ble.

The paper is organized as follows. In Section 2 we show the architecture
of EasyAnalyzer and its main modules. In Section 3 we go in details
in the implementation of the core modules. In Section 4 we draw some
conclusions and discuss future work.

2 The architecture of EasyAnalyzer

The conceptual architecture of EasyAnalyzer is presented in Figure 1 and
it is split in three main abstraction layers. Each layer of the hierarchy relies
on the services supplied by lower levels and provides a set of more abstract
operations.
Analysis system: it comprises the core classes of EasyAnalyzer. It is
the most abstract level and contains the control logic of the different types
of analysis provided in the system. The code for the analyses is completely
abstract from the problem at hand and also from the actual implementa-

2



Figure 1: EasyAnalyzer layered architecture.

tion of the solver. The classes of this layer delegate implementation- and/or
problem-related tasks to the set of lower level classes, which comply with a
predefined service interface (described in the following).

Solver interfaces: this layer can be split into two components: the top one
is the interface that represents an abstract solver subsystem, which simply
prescribes the set of services that should be provided by a concrete solver in
order to be used in the analyses. The coupling of the analysis system with
the implementation is dealt with by this component.

The lower component is the concrete implementation of the interface for
a set of SLS software development environments. Notice that in the case
of EasyLocal++, this component is not present since EasyAnalyzer
directly integrates within the development framework classes. The reason
is that in the design of the solver interface we reuse many choices already
made for EasyLocal++ thus allowing immediate integration.

For other software environments, instead, the solver subsystem com-
ponent must be explicitly provided. Depending on the capabilities of the
software environment, these interfaces can be implemented in a problem-
independent manner (so that they can be directly reused across all ap-
plications) or it might require to be customized for the specific problem.
Although in the second case the user could be required to write some addi-
tional code, our design limits this effort since our interfaces requires just a
minimal set of functionalities.

Solver environment: it consists of the (possibly generic) SLS software de-
velopment environment plus the problem-specific implementation. In some
cases these two components coincide, as for solvers that do not make use of
any software environment. In this case the interaction with the solver can
make use of a simple command-line interface.

At present, we have implemented the direct integration with EasyLo-

3



Figure 2: UML class diagram of the analysis system.

cal++ and to the command-line interface1 by means of a set of generic
classes (i.e., C++ classes that make use of templates that should be in-
stantiated with the concrete command-line options). We plan to implement
also the interfaces to other freely available software environments like, e.g.,
ParadisEO [3] and Comet [13].

In the following subsections we present more in detail the problem-
independent layers of the EasyAnalyzer architecture and we give some
examples of code.

2.1 The analysis system

The main classes of the analysis system are shown in Figure 2 using the
UML 2.0 notation [12]. As in Figure 1 we report in solid lines the fully
implemented components (dotted lines for the forthcoming ones).

Let us start our presentation with the EasyAnalyzer class. This class relies
on the Factory method pattern to set up the analysis system on the basis of
a given solver interface. Notice that the interface is specified as a template
parameter, so that we are able to write the generic code for instantiat-
ing the analysis system regardless which of the concrete implementations
is provided. Furthermore, the EasyAnalyzer class provides a standardized
command-line interface for the interaction with the analysis system. This
task is accomplished by managing a command-line interpreter object that
is directly configured by the analysis techniques. That is, each analysis

1In Figure 1 the implemented components are denoted by solid lines while dotted lines
denote components only designed.

4



technique “posts” the syntax of the command-line arguments needed by
the interpreter object that is in charge of parsing the command line and
dispatching the actual parameters to the right component.

The main component of the analysis system is the Analyzer class, which
relies on the Strategy pattern. This component represents the interface of an
analysis technique, whose actual “strategy” is going to be implemented in
the concrete analyze() method defined in the subclasses. The report(ostream)

method is used to provide, on an output stream, a human- and/or machine-
readable report of the analysis, depending on the parameters issued on the
command line.

The Analyzer class is then specialized on the basis of the SLS features
that are subject of the analysis into the following three families:

SearchSpaceAnalyzer: these analyzers deal with features that are related
to the search space. Several crucial properties of the search space can be
analyzed with these modules, such as landscape characteristics and states
reachability.

RunTimeBehaviorAnalyzer: their aim is to analyze the run-time behavior
of the solvers. Analyses belonging to this family are, e.g., run-time distri-
bution (RTD), run-length distribution (RLD) and solution quality distribution
(SQD).

MultiSolverAnalyzer: they handle and evaluate groups of solvers. For ex-
ample the Race analyzer tries to find-out the statistically best configuration
of a solver among a set of candidate configurations by applying a racing
procedure [2].

The interface with the services provided by the analysis system is es-
tablished with the AbstractSolverInterface abstract class, which relies on the
Façade pattern whose aim is to provides a simple interface to a complex sub-
system. This class and the underlying classes and objects responsibilities
are going to be detailed in the following subsection.

2.2 The solver interface

The architecture of the solver interface is shown in the top part of Figure 3.
The derived classes on the bottom are the implementation of this interface
in the EasyLocal++ framework.

The SolverInterface class acts as a unified entry point (the Façade) and
as the coordinator of a set of underlying classes (Abstract Factory and Fac-
tory method patterns). Indeed, according to the EasyLocal++ design, we
identify a set of software components that take care of different responsibili-
ties in a SLS algorithm and we define a set of adapter classes for them. These

5



Figure 3: UML class diagram of the solver interface.

adapters have a straight implementation in EasyLocal++ (Figure 3, bot-
tom part), and are those components that instead must be implemented
for interfacing with different software environments. The components we
consider are the following: StateManagerAdapter: it is responsible for all
operations on the states of the search space that are independent of the
definition of the neighborhood. In particular, it provides methods to enu-
merate and to sample the search space, and it allows us to evaluate the cost
function value on a given state. The component relies on StateDescriptors
for the exchange of information with the analysis system (in order to avoid
the overhead of sending a complex space representation).

NeighborhoodExplorerAdapter: it handles all the features concerning the
exploration of the neighborhood. It allows to enumerate and to sample the
neighbors of a given state, and to evaluate the difference in the cost function.

SolverAdapter: it encapsulates a single SLS algorithm or a complex solu-
tion strategy that involves more than one single SLS technique. Its methods
allow us to perform a full solution run (either starting from a random initial
state or from a state given as input), possibly storing all the trajectory from
the initial state to the final one. This component returns also information
on the running time and on the state costs.

6



In order to use EasyAnalyzer the user needs to instantiate the Solver

template of the EasyAnalyzer class with the proper implementation of the
AbstractSolverInterface. As for the EasyLocal++ solver, this interface is
already provided with the framework, whilst for the command-line interac-
tion the functionalities must be implemented by the user in the stand-alone
executable.

3 Implementation of EasyAnalyzer

In this section we describe two representative examples of the analyzers
currently implemented, with emphasis on the design process that relies on
the abstractions provided by the Solver interfaces.

3.1 SearchSpaceAnalyzer

In this section we illustrate the design and implementation of an analyzer for
Basins of attraction (BOA), useful for studying the reachability of solutions.
Given a deterministic algorithm, the basin of attraction B(s) of a search
space state s (usually a minimum), is defined as the set of states that,
taken as initial states, give origin to trajectories that end at point s. The
quantity rBOA(s), defined as the ratio between the cardinality of B(s) and
the search space size (assumed finite), is an estimation of the reachability of
state s. If the initial solution is chosen at random, the probability of finding
a global optimum s∗ is exactly equal to rBOA(s∗). Therefore, the higher
is this ratio, the higher is the probability of success of the algorithm. The
estimation of basins of attraction characteristics can help in the a posteriori
analysis of local search performance, to provide explanations for the observed
behavior. Moreover, it can also be useful for the a priori study of the most
suitable models of a problem, for instance for comparing advantages and
disadvantages of models that incorporate symmetry-breaking or implied

The development of a specific analyzer starts from the implementation of
the interface SearchSpaceAnalyzer that declares the basic methods analyze(),
for the actual analysis to be performed, and report(), defining the output of
the analysis. The main goal of a BOA analyzer is to find the size of all, or a
sample of, the local and global minima basins of attraction, corresponding
to the execution of a given (deterministic) algorithm A. Therefore, a BOA
analyzer must be fed with problem instance and search algorithm and its
task is to scan the search space for finding attractors and their basins. The
procedure of search space scanning can be implemented in several ways,
and it could primarily be either an exhaustive enumeration or a sampling.
Attractors and their basins can be then computed by running algorithm A
from every possible initial state s, returned by the scan method, till the
corresponding attractor.The main parts of the analyze() method for the BOA

class are as detailed in Listing 1.

7



Listing 1: The analyze() method for the BOA class.
void BOA:: analyze (){

BOAData data;

initializeAnalysis (); // loads instance and solver

StateDescriptor state = scanSpace ();

while (state.isValid ()) // while there are feasible states

{ const Result& result = solver.run(state);

updateBOAInfo(result.getStateDescriptor ());

state = scanSpace ();}}

The BOA analyzer is designed through the Template Method pattern,
that enables the designer to define a class that delegates the implementation
of some methods to the subclasses. In this case, the implementation of the
method scanSpace() is left to the subclasses, so as to make it possible to im-
plement a variety of different search space scanning procedures, such as enu-
meration and uniform sampling. These methods rely on StateManagerAdapter

for enumeration and random sampling of the search space, respectively.
In an analogous way, EasyAnalyzer implements classes for performing

position type analysis [10], i.e., classify each state as (strict) local minimum/-
maximum, plateau, slope or ledge as a function of the cost of its neighbors.

3.2 MultiSolverAnalyzer

EasyAnalyzer includes also a set of analyzers that manage a set of SLS
solvers and whose aim is to perform a comparative analysis among different
solvers.

We have developed the set of classes that implement the Race approach
by [2]. This procedure aims at selecting the parameters of a SLS algorithm
by testing each candidate configuration on a set of trials. The configura-
tions that perform poorly are discarded and not tested anymore as soon as
sufficient statistical evidence against them is collected.

In order to perform the analysis, the user must specify a set of solvers
that are going to be compared in the Race and a set of instances on which
the solvers will be run.

We present here the method analyze() of the class Race (Listing 2). The
method works in a loop that evaluates the behavior of the configurations on
an instance and collects statistical evidence about them. We would like to
remark that our implementation follows the lines of the R package [1].

Listing 2: The analyze() method for the class Race.
void Race:: analyze ()

{ initializeAnalysis (); // loads instances , solvers and

// sets up the set of aliveSolvers

replicate = 0;

do

{ performReplicate (instances[replicate % instances.size()],

replicate);

8



if (replicate >= min_replicates)

// the test is performed only after a minimum number of

replicates

{ TestResult res = statisticalTest (seq(0, replicate),

aliveSolvers , conf_level);

updateAliveSolvers(res.survived);

statistics[replicate] = res.statistic;

p_values[replicate] = res.p_value;

}

replicate ++;

}

while (aliveSolvers.size() >1 && replicate <max_replicates);

}

The class Race makes use of the Template Method pattern: the selec-
tion algorithm relies on the implementation of the abstract statisticalTest()

method, which is implemented in two different sub-classes for the Student’s
t-test (TRace) and the Friedman’s test (FRace).

4 Conclusions

We have presented EasyAnalyzer, a software tool for the principled exper-
imental analysis of SLS algorithms. The tool is very general and can be used
across a variety of problems with a very limited human effort. In its final
version, it will be able to interface natively with a number of development en-
vironment, whereas in its current form it is interfaced with EasyLocal++,
but also with any solver at the price of configuring a command-line interface.
The design of EasyAnalyzer deliberately separates the problem-/imple-
mentation-specific aspects from the analysis procedures. This allows us, for
example, to (re)use directly new analyses classes —developed at the frame-
work level— by applying them to all the solvers for which a Solver interface
already exists. We believe that our attempt to define such an environment
can be regarded as an initial step toward engineering the experimental anal-
ysis of SLS algorithms.

References

[1] M. Birattari. The race package for R. racing methods for the selection
of the best. Technical Report TR/IRIDIA/2003-37, IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium, 2003.

[2] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algo-
rithm for configuring metaheuristics. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2002), pages 11–18,
New York (NY), USA, 9-13 July 2002. Morgan Kaufmann Publishers.

9



[3] S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A framework for the
reusable design of parallel and distributed metaheuristics. Journal of
Heuristics, 10(3):357–380, 2004.

[4] L. Di Gaspero, A. Roli, and A. Schaerf. EasyAnalyzer: An object-
oriented framework for the experimental analysis of stochastic local
search algorithms. In Engineering Stochastic Local Search Algorithms.
Designing, Implementing and Analyzing Effective Heuristics, volume
4638 of Lecture Notes in Computer Science. Springer–Verlag, 2007.

[5] L. Di Gaspero and A. Schaerf. Writing local search algorithms us-
ing EasyLocal++. In Optimization Software Class Libraries. Kluwer
Academic Publishers, 2002.

[6] L. Di Gaspero and A. Schaerf. EasyLocal++: An object-oriented
framework for flexible design of local search algorithms. Software—
Practice and Experience, 33(8):733–765, 2003.

[7] C. Fonlupt, D. Robilliard, P. Preux, and E.-G. Talbi. Fitness landscapes
and performance of metaheuristic. In S. Voß, S. Martello, I. Osman,
and C. Roucairol, editors, Metaheuristics – Advances and Trends in
Local Search Paradigms for Optimization,, chapter 18, pages 255–266.
Kluwer Academic Publishers, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
elements of reusable object-oriented software. Addison-Wesley Publish-
ing, Reading (MA), USA, 1995.

[9] S. Halim, R. Yap, and H.C. Lau. Viz: a visual analysis suite for ex-
plaining local search behavior. In Proceedings of the 19th annual ACM
symposium on User interface software and technology (UIST ’06), pages
57–66, New York (NY), USA, 2006. ACM Press.

[10] H.H. Hoos and T. Stützle. Stochastic Local Search Foundations and
Applications. Morgan Kaufmann Publishers, San Francisco (CA), USA,
2005.

[11] H.C. Lau, W.C. Wan, M.K. Lim, and S. Halim. A development frame-
work for rapid meta-heuristics hybridization. In Proceedings of the 28th
Annual International Computer Software and Applications Conference
(COMPSAC 2004), pages 362–367, 2004.

[12] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Media, Inc.,
Sebastopol (CA), USA, 2005.

[13] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT
Press, Cambridge (MA), USA, 2005.

10


